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FOREWORD

Welcome to the Proceedings of the third in a series of agent simulation conferences
cosponsored by Argonne National Laboratory and The University of Chicago. The theme of this
year’s conference, Social Agents. Ecology, Exchange and Evolution, was selected to foster the
exchange of ideas on some of the most important social processes addressed by agent ssmulation
models, namely:

» Thetrangdation of ecology and ecological constraintsinto social dynamics,

» Therole of exchange processes, including the peer dependencies they create;
and

* The dynamics by which, and the attractor states toward which, social
processes evolve.

As stated in the Call for Papers, throughout the social sciences, the simulation of social
agents has emerged as an innovative and powerful research methodology. The promise of this
approach, however, is accompanied by many challenges. First, modeling complexity in agents,
environments, and interactions is non-trivial, and these representations must be explored and
assessed systematically. Second, strategies used to represent complexities are differentially
applicable to any particular problem space. Finally, to achieve sufficient generality, the design
and experimentation inherent in agent ssimulation must be coupled with social and behavioral
theory. Agent 2002 provides a forum for reviewing the current state of agent simulation
scholarship, including research designed to address such outstanding issues.

This year’s conference introduces an extensive range of domains, models, and issues —
from pre-literacy to future projections, from ecology to oligopolistic markets, and from design to
validation. Four invited speakers highlighted maor themes emerging from social agent
simulation.

In Varieties of Emergence, Nigel Gilbert introduces multiple ways in which agent models
can address social emergence, which clearly is one of the strengths of the paradigm. When
multiple forms of socia emergence are chained together, models with multi-layer, micro-macro
processes become possible. Lars-Erik Cederman reiterates this theme in his presentation, Levels
of Complexity: Endogenizing Agent-based Modeling. The discussions linked these two sessions
together.

In Smulating Society: The Tension between Transparency and Veridicality, Kathleen
Carley frames one of the fundamental axes of tension within agent modeling, that is, the
counterposition of simple transparent models with complex, empirically informed models. She
posits a shared infrastructure for social and organizational models, including shared toolkits;
shared data sets; and databases linking papers, models, algorithms, and data.

Finally, Scott Page addresses the role of diversity in model design and development. His

presentation, The Interplay of Differences, provides insight, paradoxes, and cautionary tales with
which to guide our efforts in the yearsto come.

vii



We believe that Agent 2002 contributes to further progress in computational modeling of
socia processes, and we hope that you find these Proceedings to be stimulating and rewarding.
As the horizons of this transdiscipline continue to emerge and converge, we hope to provide
similar forums that will promote development of agent simulation modeling in the years to come.

Charles Macal, Director

Center for Complex Adaptive System Simulation
Decision and Information Sciences Division
Argonne National Laboratory

David Sallach, Director

Socia Science Research Computing
The University of Chicago
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AGENT-BASED METHODS, TOOLKITS, AND TECHNIQUES

M.J. NORTH, Argonne National Laboratory, Argonne, IL*
R.M. BURKHART, Deere & Company, Moline IL

ABSTRACT

Several leading agent-based modeling toolkit developers and users met on October 7 and
10, 2002, at the Agent 2002 Conference on Socia Agents. Ecology, Exchange, and
Evolution in Chicago, Illinois, to discuss the state of the art and future directions of this
emerging field. The discussions covered the Repast, Swarm, and NetLogo
toolkits'techniques, as well as several others. The primary objective was to consider the
capabilities of the various toolkits and techniques and discuss how they can best be used
to meet the general needs of the agent-based modeling community. The demonstrations
and discussions during these two days covered many topics, including possible ways to
coordinate efforts across the various agent-based toolkits. Further, the formation of a
new national social simulation society was announced.

SOCIAL SIMULATION SOCIETY
A nationa initiative is underway to form a new professional society that will focus
specifically on computational socia science. The purpose of this organization will be to explore
advances in computational and organizationa science. Both the toolkit-oriented sessions and the
main conference are intended to be early activities that will lead to the formation of the North
American Association for Computational Social and Organizational Science (NAACSOS).
The objectives of NAACSOS will be asfollows:

» To encourage the international advancement of theory and research based on
socia simulation;

e To promote cooperation among researchers in the field;

* To maintain and list conferences, meetings, and workshops that are related to
socia simulation, with the aim of reducing conflictsin scheduling;

» To coordinate the organization of aregular international conference; and

e To support the development and enhancement of educational programs in the
field and to publicize their availability.

*  Corresponding author address. Michael J. North, Decision and Information Sciences Division, Argonne
National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439; e-mail: north@anl.gov. Roger M. Burkhart
can be reached at BurkhartRogerM @JohnDeere.com.



Membership in NAACSOS will be open to scholars, practitioners, and students who (1) agree
with the objectives of the society and (2) pay annua dues appropriate for their membership
category.

The new NAACSOS group expressed interest in engaging with the entire community of
agent-based model ers-researchers concerned with tools, ideas, and issues relevant to their own
community. Discourse within and among the agent-based modeling community will broaden the
focus of the group, rather than limiting discussions to particular toolkits.

Kathleen Carley (Carnegie Méelon University) is arranging for Computational
Mathematical and Organization Science (CMOT) to be the officia journal of NAACSOS.
CMOT is published by Kluwer Academic Publishers.

NAACSOS will consist of three subject areas, or sections, that support intellectual
interchange in specific areas of modeling and research, including the sponsorship of specialized
conferences or conference tracks. The current section categories are listed below, along with the
contact person for that focus area:

e Computational  Socia  Theory, David Sallach, contact lead
(sallach@uchicago.edu);

* Methods, Techniques, and Toolkits, Michael North, contact Ilead
(north@anl.gov); and

* Simulation Applications, Charles Macal, contact lead (maca @anl.gov).

The NAACSOS web site is http://www.dis.anl.gov/naacsos/.

Note: The inaugura conference for the newly formed NAACSOS society will take place in
Pittsburgh, Pennsylvania, on June 22-25, 2003. For information about this conference,
visit the Web site at http://www.casos.ece.cmu.edu/conference2003/.

TOOLKIT DEVELOPER’S MEETING
The toolkit sessions were organized on the basis of their potential role in support of the
NAACSOS section on Methods, Techniques, and Toolkits. Paper sessions on Friday and
Saturday were also loosely organized on the basis of the other sections within NAACSOS.

The Toolkit Developer’s Meeting held on October 7, 2002, included representatives from
academia, industry, and government. These representatives are listed below:

» Michael North, Argonne National Laboratory, organizer

* CharlesMacal, Argonne National Laboratory

1 Thejourna’s Web site is http://www.kluweronline.com/issn/1381-298X..



» David Sallach, University of Chicago Socia Science Research Computing,
Repast

* Nick Collier, University of Chicago Social Science Research Computing,
Repast

» Tom Howe, University of Chicago Socia Science Research Computing,
Repast

* Roger Burkhart, Swarm Development Group, Swarm
e Laszlo Gulyas, Harvard University/Lorand EGtvds University, various toolkits
» Seth Tisue, Northwestern University, NetL ogo?
*  Uri Wilensky, Northwestern University, NetLogo
In addition to the toolkit representatives, an expanding group of approximately six people who
were attending a Repast tutorial the next two days arrived early to listen in and participate in the
panel discussions.
The toolkit meeting was organized as a series of four panels:
*  Where Are We Today?
*  Where Should We Bein One Y ear?
*  Where Should We Bein Five Y ears?
* How Do We Get There?
Each was framed and introduced by one of the toolkit representatives, with three or four
additional representatives who were responsible for expanding their own points. The panel lineup
islisted in atable at the end of this paper.
The panel reached agreement in a number of areas, as listed below:
* Thereis a sense that we are getting much closer to where we need to be in a
first generation of tools. This belief is supported by the stability being reached
in the toolkits. The current stage of toolkit development, however, may reflect
only a*“local optimum” that indicates the possibility of moving to other places
entirely in the toolkit space.
» The gap between the modeler and the model builder or programmer is a big

issue. We need methodologies that can better capture and trandate the intent
or concepts of a model into its implementation, or even eliminate this

2 NetLogo is a new version of the origind MIT StarLogo that is being developed at the Center for Connected
Learning at Northwestern University (http://ccl.northwestern.edu/netlogo/).



tranglation entirely. Although more declarative ways of capturing the model
structures might be prepackaged, there continues to be a cost (i.e., less
flexibility in constructing custom models, such as that Swarm and Repast).
A major goal of NetLogo is to eliminate any difference between the modeler
and programmer, possibly by restricting flexibility but greatly increasing
accessibility. There is an enormous difference between projects that have one
modeler or programmer compared with larger projects that have multiple
people assigned to specialized roles.

» Agent-based modeling is definitely “coming into its own,” as it is being
accepted as a modeling and research technique. Although it may still be
viewed as “on the edge of the periphery,” entire communities are emerging,
often across disciplines as aided by the common toolkits. The toolkits have
served an initial purpose, that is, aiding people in doing what they need to do.

* Newcomers to the community are still very confused when they encounter
agent-based modeling through the various toolkits they are pointed to.
Opportunities abound for training and community discussions that focus on
principles, methods, and techniques that are not linked to specific toolkits.
This opportunity is supported by the number of people who cross-subscribe to
the various toolkit lists.

* Individua disciplines have made little progress in building their own domain-
oriented frameworks or libraries, with some exceptions such as social network
models in Repast. Although organized efforts have been few, new software
techniques such as aspects or patterns may be useful in bridging the
abstraction gaps of frameworks that still have to drive executable code out of
the high degrees of customization that may be generated from cross-cutting
domain specifications.

* To continue its advance on many fronts, agent-based simulation needs to
expand to integrate with traditional simulation techniques (both discrete-event
and continuous simulations, for example) and to related roles of agent-based
computing such as agent-based optimization. Agent-based modeling still
seems largely disconnected from multi-agent systems researchers, though this
may differ somewhat in Europe. Rea-time and *“people-in-the-loop”
simulations (being developed by NetLogo researchers, for example) are also
possibilities that could to take agent-based modeling and simulation beyond
current boundaries.

» Methods for effective use of agent-based simulation in various roles of both
research and application need to be treated more systematically, including
applying such techniques as validation and verification, which are sometimes
not even addressed or mentioned in published models.

These points summarize the state of agent-based modeling at this time (2002). The
following section looks at the various time frames of where we need to go, including specific
action proposals. These ideas were discussed not only during the panels, but also throughout the
conference, especially when the developers reconvened to present overviews of their respective
toolkits.



TUTORIALS

The Repast tutorial attracted a capacity turnout of nearly 30 people. Significantly more
people arrived for the “Methods, Toolkits, and Techniques’ session of the main conference,
followed by continued increased attendance for the paper sessions.

METHODS, TOOLKITS, AND TECHNIQUES

Individual toolkit overviews were presented on October 10 for the larger general
audience. These sessions provided a more detailed description of the status and directions of
individual toolkits than discussed in the panels held earlier in the week. The four toolkit
presentations and demos looked at Swarm, Repast, Ascape, and NetLogo. Brief summaries of
these presentations are given, followed by a broader discussion of future toolkit directions.

The presentation, Svarm: An Eight-Year Design Perspective, given by Roger Burkhart,
combined a general history and overview with a demo, a review and assessment of original
design goals, and some options for future directions. Many of the basic design principles of
Swarm, including dynamic schedules of actions on an object-oriented representation, have
proven successful and also have served as a model for other toolkits. The role of a common
toolkit in forming a nucleus for communities of agent-based modelers has also been well proven.

Regarding specific technical goals for Swarm, many of its more elaborate structures have
not been extensively utilized by most models. These structures support complex mixing of
schedules and activities under explicit concurrency semantics, including distribution across
multilevel swarms. As aresult, some of these structures are not as usable or fully implemented as
originally intended. They were aso intended to support execution on parallel and distributed
hardware; this remains a future option. Further open challenges include the support of agents that
build their own definitions of structure and behavior at runtime to create a capacity for true open-
ended evolution, and for the general model of concurrent agent interaction to stand as a self-
defining model of computation in its own right, rather than resting on some other programming
layer. At this time, these elements of original design vision may be more appropriate for new
research than for direct incorporation into a production toolkit that has its own user base.

For amore redlistic set of options for future directions, Roger Burkhart also used some of
the dides from Next Generation Swarm, which Marcus Daniels presented at the ALife VII
conference in August 2000 (available at http://www.swarm.org/alife7/img0.htm). Marcus
presents the option to run Swarm as a browser plug-in for Web or desktop delivery under the
Mozilla framework, including representation of the model as an XML document tree with
multilanguage scripting capability against a COM interface. These capabilities have already been
developed and demonstrated in various forms, including in collaboration with the IMT project of
Ferdinando Villa, and so might be included in upcoming releases of pending Swarm code.

Seth Tisue, adong with severa of the graduate students who are aso part of Uri
Wilensky's Center for Connected Learning group at Northwestern University, gave an overview
and demo of NetLogo (home page at http://ccl.northwestern.edu/netlogo/). NetLogo runs in a
pure Java environment like the most recent MIT StarLogo version and implements the same
Logo language; however, it is a separately developed modeling environment with its own
funding directed by students. A library of 80+ extensively documented model examples includes
many classic agent-based simulations as well as others that help the goa of system-oriented



thinking. Like the original StarLogo, NetLogo provides fully interactive model development. The
developers also want to go beyond strict two-dimensional spaces and are adding features like a
BehaviorSpace for parameter sweeping of more controlled experiments. HubNet is a new project
for classroom participation as part of agent-based models using handheld wireless devices such
as TI-83+ calculators. NetLogo has a large and growing user community because it is used in
schools. It is available free for educational and research use, without the source of the underlying
implementation at this time.

Miles Parker of BiosGroup discussed Ascape, including an updated status on its
development. BiosGroup has licensed the rights to Ascape and invested in significant additional
development. A significantly upgraded version (version 3.0) was released to the public recently.
In addition to generalizing the abstract patterns of its organizing “scape” concept, capability is
being added in specific areas such as GIS. BiosGroup envisions an entire suite of Ascape “Line
of Business’ modules around a common core. The common core will remain available and free
of license fees for academic use, but other licensing has not been resolved. A new feature permits
the adjustment of the observed running speed of a simulation. Miles views Ascape as
representing an 80/20 or 95/5 solution for the agent modeling features that people typically use,
with some trade-off in flexibility.

Nick Collier and Tom Howe presented a summary of Repast, including current
developments. A new version 2.0 is amost ready to be released. [Note: Repast version 2.0 was
released in late 2002.] Scheduled upgrades include floating point time values and support of
asynchronous threads, such as North would like to use to target parallel execution. Its scheduling
model now includes events that occur over a duration, which aids distribution. The addition of
GIS capability, both raster and vector, has been a frequent request, and work isin progress as part
of agoal to generalize the topology of models. Major new effort has gone into a new SimBuilder



explicit or declarative form than just program code. There is some interest in
reducing models to underlying mathematical formalisms and using formal
specification languages such as Object Z, but also possibly expressing model
concepts in UML or as vocabularies in XML (which could serve as aform in
which to generate model “documents’ for execution by an engine). Exploring
these various paths is one of the most direct recommendations to come from
the discussions. The Repast and Swarm groups have offered to try to organize
a follow-up activity probably including face-to-face meetings, but further
details are still undefined.

New agent-based modelers could benefit from a less fragmented path of entry
into the various toolkit communities, including places where more generd
principles and important techniques and issues that span the toolkits can be
discussed. In the past year, some of the classes and workshops held by
Argonne, University of Chicago, and Santa Fe Institute have tried to explain
and position the various toolkits, but this work can be expanded to help fill the
need for more complete and accessible training. Existing events such as
SwarmFest have long tried to address the broader agent modeling community
(not just Swarm). The Swarm Development Group, however, would have to
modify its charter to shift fully to a broader cross-toolkit role than its primary
mission of supporting Swarm. As part of the new NAACSOS section,
Argonne may develop some mailing lists that focus on broader modeling
issues than are tied only to toolkits. The toolkit events and discussions,
however, offer an unusually broad umbrella across disciplines. This unique
interaction is areal value that should not be lost, but the quality and relevance
of individual application models are best evaluated within the disciplines
themselves. While participants basically agreed on the general needs, these
have not yet been trandated into a more fully coordinated plan for reaching
out across the different agent modeling communities. From the discussions, it
is not clear how much is desired or realistic. It becomes increasingly difficult
to identify the current communities and the relative usage of different methods
and tools and current needs. Roger Burkhart suggested that the upcoming
SwarmFest 2003 (April 13-15, 2003) might be well-timed to follow up on
cross-toolkit strategies and discussions, as that conference has previously
helped to focus these efforts. Concrete evidence of progress includes common
course materials, published books, Web sites, discussion lists, repositories of
best practices, patterns and architectural templates, and minutes or
proceedings of various events.

On the technical platform for models, Web delivery is an important need
regardless of language. For both quick prototyping and research, scripting, not
low-level programming, is generating increased interest. Encouraging access
and delivery of models, from modelers to model builders to users, will help
the larger community to grow. The engine behind the scenes could
increasingly be hidden behind an integration and delivery framework. The
need for hybrids of agent-based models with GIS and other nonagent models
could prioritize interoperation across boundaries that divide current
implementations. The toolkits should continue to explore the possibilities and
share results in making different kinds of models work together, including
methods for direct interoperation across toolkits.
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We should not assume that any of the toolkits is at an endpoint, or that a
narrower and more consolidated range of toolkits is a good thing. The current
toolkits could be local optima that are due to be replaced completely,
especialy the longer the horizon of possible futures being considered. The
impact on how we even conceptualize the problems being modeled is too early
to think we can draw boundaries around anything. We need to continue our
exploration to determine when the toolkits could run out of added value or
create actua barriers that make it better or easier to just program a model
directly.

The most concrete suggestion was to revisit the question of whether we are at
alocal optimum one year from now.

Finally, the agent-based modeling group could look at ways to obtain funding
for the wide range of enhancements suggested during these sessions.

TOOLKIT DEVELOPER’S PANEL LINEUP

Toolkit Developer’ s Meeting Welcome
Michael North

Where Are We Today?

Moderator: Nick Collier

Panel: Roger Burkhart, Tom Howe, Charles Macal,
Seth Tisue/Uri Wilensky

Where Should We Be in One Year?

Moderator: Roger Burkhart

Panel: Laszlo Gulyas, Tom Howe, Charles Macal,
Seth Tisue/Uri Wilensky

Where Should We Be in Five Years?
Moderator: Laszlo Gulyas
Panel: Nick Collier, Roger Burkhart, Michael North

How Do We Get There?

Moderator: Tom Howe

Panel: Michael North, Laszlo Gulyas,
Seth Tisue/Uri Wilensky
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UNDERSTANDING THE DIFFERENCE THAT SPACE CAN MAKE:
TOWARD A GEOGRAPHICAL AGENT MODELING ENVIRONMENT

D. O’'SULLIVAN, The Pennsylvania State University, University Park”

ABSTRACT

The geographical environments in which agents interact in models are typicaly very
simplified. Many models run in completely aspatial worlds, such as markets, or in
simplified representative spaces. In particular, grid-based lattices are the dominant
gpatial form in agent models. It is argued that richer representations are required to
reflect the range of spatial forms that socia interactions can take. This argument is
supported by reference to an earlier study by the author examining the effects of
deforming the grid structure of two cellular automata (CA): a majority-rule segregation
CA and the ‘Game of Life.” The findings demonstrate that spatial configuration can
affect spatial dynamics, so that it is important to develop ways of understanding the
difference that spatial configuration makes to the dynamics of social systems. Adding
geographical sophistication complicates agent model architecture. Such models are more
complex, and they also risk sacrificing the potential for learning about general system
dynamics by observing model behavior. Thus, the analytical tools required to study
geographically sophisticated models are aso complex. Challenges facing the
development of a geographical agent modeling environment to address issues of spatial
representation and subsequent model analysis are briefly discussed.

INTRODUCTION: SPACE IN AGENT-BASED MODELS

There is atendency in social science to regard space as merely a container within which
socia processes play out. This tendency might be characterized as the “All the world's a stage”
view of life; that is, space is ssmply a backdrop, or at most a frame of reference, within which
locations can be assigned coordinate values. This Newtonian perspective has been powerfully
reinforced by the activities of cartographers, national cadastres, and more recently, by the global
positioning system and geographical information system (GIS). These technologies focus
attention on where things are with respect to a fixed frame of reference.

Recent approaches in human geography and, increasingly, in social science have rejected
the idea of space as a neutral container. In human geography, this tendency emerged in the
related notions of cognitive geography, cognitive maps, and behavioral geography (Golledge and
Stimson, 1997). In a groundbreaking study of the ‘intelligibility’ of urban environments, urban
planner Kevin Lynch (1960) argues that people develop internal representations of the
environment, which affects behavior over time. Work on cognitive maps and cognitive mapping
in robotics (Kuipers, 1979; Gopa and Klatzky, 1995), and in planning and psychology (Gérling,
1995), builds on these ideas. Kitchin (1996) provides an overview of these studies. For now, the
important point is that representations of spatial structure affect the behavior of individual agents.

*
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More germane to contemporary geography is an encounter in the mid-1980s with
Anthony Giddens's structuration theory. This theory was partly aresult of Torsten Hagerstrand’s
time geography (Hagerstrand, 1970; 1982). In time geography, the interaction of time and space
in the daily routines of individuals is recognized. A person cannot be in two places at one time
but can have interrelated social rights, responsibilities, and obligations that require presence in a
number of places over the course of a day (or week, month, year, or lifetime). The details of the
interaction between a person’s daily routines in time and space—his or her life-path—and the
life-paths of others are important. Giddens (1985) explicitly relates his influential theory of
structuration to time geography, arguing that the spatial locations (locales) where socia activities
occur are at once the outcome of socia activities and also influence the activities that occur. In
human geography, the locale as an emergent phenomenon has been applied at scales from the
personal to the regional (Thrift, 1983).

Although the time-geography framework has much to offer multiagent simulation
modeling, little or no attempt has been made to deal with these complexities in constructing
agent models. This may be excusable where agent modeling is deliberately very abstract, in the
hope of uncovering general ‘laws of motion’ of social systems. However, the question remains
open regarding how much difference spatial configuration and socio-spatial structure makes.
More pragmatically, as agent modeling is increasingly directed to policy applications, there is a
pressing need to be able to represent complex spatial configurations. As a step in the right
direction, this paper proposes development of agent models that can accommodate more complex
representations of spatial environments. Thiswork can be seen as running loosely in parallel with
attempts to represent socia structure and organizations in agent models (see Prietula, et a.,
1998).

This paper is organized in two parts. First, to demonstrate the difference that space can
make, even in simple cases, the results of experiments with cellular automata (CA) are reported.
These establish that the spatial structure of a model can make a difference to outcomes. Second,
suggestions for a geographical agent modeling environment (GAME), and some of the issues to
be faced in developing it, are discussed.

EXPLORING THE DIFFERENCE THAT SPACE MAKES: EXPERIMENTS
WITH GRAPH-BASED CELLULAR AUTOMATA

To demonstrate the importance of spatia configuration to the behavior of complex
dynamic systems, experiments on varying the lattice structure of two familiar CA models are
described. For the interested reader, more details are reported in O’ Sullivan (2000, 2001a).
(Flache and Hegselmann [2001] report on similar work.) Anticipating the difference that lattice
structure makes, Duncan Watts experimented with CA running on small world network
structures (Watts, 1999, Chapter 8).

These experiments use an irregular or graph-based cellular automaton. In a conventional
cellular automaton, cells are located at points on a regular lattice, and, except for edge effects,
every cell neighborhood is identical. Typically, in two-dimensional grid lattices, each cell has
four orthogonal neighbors (the von Neumann neighborhood) or, optionally, an additional four
diagona neighbors (the Moore neighborhood). Frequently, lattices are ‘toroidal,” wrapping
around in the east-west and north-south directions, so that all cell neighborhoods are equivalent.
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In a graph-based cellular automaton, cells are treated as vertices in a graph G(V, E), with
vertex set V = {vi} and edge set E = {g;}, where each edge e; represents a neighbor relation
between two vertices v; and v;. The neighborhood N(v;) of vertex v; isthe set {v; | j € E}. The
regular lattice of a conventional CA is a specia case of this more genera structure. This
formalism is presented in more detail in O’ Sullivan (2001b).

Altering the lattice structure of a CA (or agent model) begs the question: how does lattice
structure affect system dynamics? This question is not easily answered. The current approach is
to take an existing well-known CA on a regular lattice and to ‘deform’ its lattice, observing
resulting changes in behavior. However, neither lattice deformation nor changes in behavior are
readily parameterized, so it is difficult to concisely summarize the results of such
experimentation. These difficulties should be borne in mind when considering the procedures
described below.

Taking a cue from Watts and Strogatz's (1998) small world lattice rewiring process, one
way to deform aregular lattice is to randomly select edges in the graph representing the regular
grid lattice. One end-vertex of a selected edge is retained, and a new vertex at the other end is
randomly selected from the graph. One difficulty arises because a path-dependency effect occurs
in the small world rewiring process; that is, as some vertices acquire more neighbors, these
vertices become increasingly likely to acquire still more neighbors, and a strongly skewed
neighborhood size distribution develops. This development is undesirable because it can lead to
difficulties in defining automaton update rules such that the same set of rules is applicable to
both regular lattices and to lattices with varying neighborhood sizes. Given the geographical
origins of this research, a rewiring process that biases rewiring in favor of nearby verticesis also
desirable.

A rewiring process consistent with these desiderata is edge-pair swapping (see Figure 1).
Four vertices vy, V1, V2, and vz are randomly selected such that vpv; and vov3 are graph edges and
Vo2 and vyvs are not. Edges vov; and vov; are then replaced by vpv, and vivs. Restrictions are placed
on how remote from each other the four vertices can be. Thus, v; is chosen so that it is no more
than two edges from vy, and vz is a randomly selected neighbor of v, that is not adjacent to v;.
This system ensures that the ‘local coherence’ of the graph is reduced only slowly by the
deformation process. That is, cells that start as neighbors are likely to remain close to one another
as graph deformation progresses. This is in contrast with small world rewiring, which rapidly
reduces average distances between vertices in a graph. The effect of repeated application of the
deformation process can be seen in Figure 1. Figure2 shows the effect of this deformation

FIGURE 1 Deforming an Irregular CA Lattice (Subscripts indicate the number or percentage of
graph edges that have been rewired in each case.)
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process on the small world measures of graph structure, characteristic distance, and mean
clustering coefficient. Because path length and clustering vary similarly, no small world structure
arises (see Watts and Strogatz, 1998, for a discussion).

Describing the complex dynamics of a CA is aso problematic. A single numeric
parameter describing system behavior is desirable because it could be regarded as a function of
the severity of deformation. In practice, the parameter most suitable for characterizing model
dynamics strongly depends on the dynamic effects observed as a model runs, and no generalized
measure is available. In these experiments, a spatial information measure (Wuensche, 1998)
proved useful. This measure has the relative entropy form,

Zp'”_p

Inq '’

where p values refer to relative frequencies of occurrence of each possible cell neighborhood
state, and q values refer to an expected frequency of occurrence calculated for each possible cell
neighborhood state. In both cases described below, with 2 possible cell states and 9 cells in each
neighborhood, there are 10 possible neighborhood configurations (from 0 through 9 cells in one
state, with the balance in the other state). High information system configurations correspond to
highly ordered arrangements of cells, where the CA rules lead to a distribution of cell
neighborhood states different from a random arrangement. Low information configurations are
indistinguishable from random on the basis of this measure. ‘High’ and ‘low’ values are relative,
since the information measure is a dimensionless number whose value is theoretically unbounded
and must be determined empirically. The specific information values attained are not important;
rather, the evolution of this value as the CA state changes over timeis of interest. The use of the
measure becomes clearer in the discussion below.

Equipped with these two tools (a relative measure of lattice deformation and a means of
summarizing system dynamics), we briefly examine the effect of deforming the lattice structure
of two well-known CA rulesin the following sections.
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Majority-rule—based Segregation: A Spatially Robust Process

In a majority-rule CA, each cell adopts at the next time step whichever state is in the
majority in its neighborhood. Starting from a random assignment of two cell states to lattice
locations, a CA rapidly segregates into a stable arrangement with contiguous regions of cellsin
one or another of the possible states. Occasionally, al cellsin the lattice end up in the same state,
although starting from configurations where either cell state is equally likely, this occurrence is
unusual. These dynamics are summarized in Figure 3, which shows the evolution of the spatial
information measure for 50 random starting configurations of a two-state, 20 x 20 toroidal grid
lattice.

4.5

Spatial Information, /

0 5 10 15 20 25 30 35
Time, t

FIGURE 3 Evolution of Spatial Information for the
Segregation CA on a Regular Lattice

For any set of starting configurations, the model behavior is summarized using the mean
final spatial information attained by the CA. If the lattice is deformed by swapping pairs of
edges, the effect on the final spatia information value attained is summarized in Figure 4. These
plots show the effect on mean final spatia information for a set of 20 random starting
configurations, for 11 different sequences of edge-pair swapping deformations, up to a total of
1,000 edge-pair swaps. In a lattice with only 1,800 edges, this extreme deformation effectively
makes the lattice a random graph.

In the left plot, a large number of edge-pair swaps can be made before any appreciable
change in behavior is observed. The right plot (note the exaggerated vertical axis) illustrates that
little change is seen for small deformations. In fact, closer scrutiny of what is happening behind
these summary data reveals that much of the fall in mean final spatial information is attributable
to an increased tendency for the system to settle in a state where al cells are in one state or the
other. The clearest outcome of this experiment is that the segregation CA is relatively robust
under changesin its spatial or relational structure.
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The Game of Life: A Spatially Fragile Process

Similar experiments were performed on the Game of Life CA, aso working with a
20 x 20 toroidal grid lattice. The Game of Life (Berlekamp, et a., 1982) is an additive CA rule,
where célls in the ‘O’ state switch to ‘1’ if they have exactly three neighbors in the ‘1’ state;
otherwise, they remain at ‘0.” Cellsin the ‘1’ state remain in the ‘1" state if they have two or
three neighbors also in the ‘1’ state; otherwise, they ‘die’ and switch to the ‘0’ state. Repeated
application of these rules on a grid lattice results in very diverse dynamic behavior that is
impossible to summarize using mean final spatial information. A more meaningful summary
statistic is the ‘transient time' before a starting configuration settles to a stable state. Figure 5
shows this statistic for three different starting configurations with transient times greater than
200, around 100, and less than 50 time steps.

To use transient times as a summary measure for CA behavior, we track how the
observed distribution of transient times changes as the lattice is deformed. This is shown in
Figure 6 for limited deformation of the Game of Life lattice. These box plots are based on only
20 random starting configurations; nevertheless, it is clear that even minor deformation of the
lattice affects the behavior of the CA, resulting in reduced variability in transient times, with
many more configurations settling to stable states in not more than 100 time steps. On the regular
|attice, the observed median transient time is more than 100 time steps. More notably, very long
lived configurations (more than 200 time steps) are only observed when 10 or fewer edge-pair
swaps have been applied to the lattice.

The mechanism by which only modest lattice deformations alter behavior so dramatically
can be explained with reference to the ‘glider’ configuration (Poundstone, 1985). On a regular
toroidal lattice, a glider, once launched, can travel across the lattice indefinitely until it collides
with other active cells. This mechanism often contributes to ongoing activity of a Game of Life
configuration, extending transient times. On a lattice with even one irregularity, it is very likely
that movement of gliders will be impeded because gliders often break up or halt and adopt a
stable configuration when they encounter a lattice imperfection. The dependence of such
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patterns in the Game of Life CA on aregular grid results in a system that is fragile under spatial
deformation.

Discussion

The inescapable conclusion of these experiments — regardless of the details — is that
CA behave differently on the basis of their neighborhood structures. This fact is hardly
surprising! However, while little work has been done to explore this issue, most CA and agent
models routinely use one or the other of alimited number of spatial structures and fail to explore
the implications of aternatives. Spatial structure isa model parameter, and, in the same way that
variables used to determine agent behavior are systematically varied in experiments, tools are
required that enable experimentation with the spatial structure of models. This is a pragmatic
argument for the importance of enabling exploration of how the spatial structure of models
affects observed behavior. Arguably, such development is also necessary on purely theoretical
grounds as outlined in the introductory remarks.

Current multiagent simulations are not spatial in the sense implied here, with effects that
can be detrimental to their use in understanding socia systems, although there are exceptions to
this generaization. In work over a number of years, Randy Gimblett and colleagues have
developed simulations of human recreational behavior (Deadman and Gimblett, 1994; Gimblett,
et a., 1996; Gimblett, et al. 2002). Westervelt and Hopkins (1999) integrate specialized
environmental agent modeling software into the open-source GRASS GIS to assist in herd
management, and Lake (2000) presents a custom-programmed agent model, also in GRASS, in a
study of the foraging activity of Mesolithic societies. An example with no direct link to aGIS is
the ‘virtual Anasazi’ work (Dean, et a., 2000). While these examples make a compelling case for
geographical agent modeling, in al cases, spatialy explicit data are used to represent the
environment across a grid, and no spatial structural or relational representation is attempted.
Some agent-based work on pedestrian behavior uses more detailed representations of geography
(Dijkstra, et al., 2001; Helbing, et a., 2001; Kerridge, et al., 2001). For example, the STREETS
model (Haklay, et al., 2001) operates on a high-resolution grid for obstacle avoidance and visual
capabilities, but it uses a network of ‘waypoints for route planning and embeds the whole in a
vector representation of urban space. Simultaneous use of various spatial representations is
strongly reminiscent of the ‘layers typical of a GIS. However, again, a more complex, relational
representation of spatial structure is not considered.

Some researchers are working with spatially structured agent models. In an investigation
of residential segregation in Israel, Juval Portugali and colleagues introduce a Delaunay
triangulation to represent neighborhoods in the built environment (Benenson, et al., 2002).
Equally, it is clear that the use by agents of GIS functionality such as viewshed generation
extends the capabilities of agents and the implied spatial structure (Itami, 2002). Indeed, it might
be argued that it is inappropriate to include explicit spatia structure, but that spatial structures
should emerge from the interactions of agents. (Batty [2001] presents an example where this
happens.) This argument recalls debates in socia science about the relationship between social
structure and individual agency but has a similar ‘which came first, the chicken or the egg?
quality to it. Whatever the outcome of that debate, pragmatically, it is important to enable the
construction of models that explicitly represent spatial structure, so that the implications of
including or omitting such effects can be explored.
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With a lattice-builder module in place, the problem with working with awide variety of
model structures representing the same or similar spatial data is effectively solved. The
possibilities listed are only the most obvious ones, and others could be developed. For example,
visibility graphs where any pair of mutualy visible locations is joined by an edge might be
auseful structure in models of human and other movement behavior (Turner and Penn, 2002).
More complex structures might be developed where the strength of relations between locations
(and aso between agents) changes over time depending on agent-agent, place-place, and agent-
place interactions.

Another magjor challenge is the problem of understanding and learning from agent models
(not just the geographical kind). Even simple agent or cellular models that depart from regular
lattice structures are formidably complex, given that, in principle at least, any model structure
might be used. In addition to the extra complexity for presentation and analysis of results for an
individual simulation run, there is the serious difficulty of inferring from the behavior of a model
running on a particular spatial structure the likely behavior of the same model on other spatial
structures. For example, how much can be inferred from a model of some social phenomenon
based on, for example, the spatial organization of a particular urban neighborhood, about that
phenomenon in other neighborhoods or other cities? Although there is no technical ‘fix’ for the
problem of inference, the development of geographical agent models makes it more important
than ever that sophisticated visualization tools are applied to the study of multiagent simulations.
Only in arichly interactive simulation environment is it likely that investigators will be able to
identify the recurrent spatio-temporal patterns that reveal what is happening in a model beyond
just watching it unfold on the screen (see, for example, DiBiase, et a., 1992, who discuss user
interactivity in animated mapping). With this in mind, further development of a GAME will
depend on providing linkages to visualization displays such as scatter plot matrices, paralel
coordinate plots, and other multivariate displays. A candidate tool for providing this functionality
is GeoVISTA Sudio, a ‘geovisuaization workbench' that enables dynamic visualization
applications to be built from software components (see Gahegan, €t a., 2002).

This paper has pointed out the importance of moving beyond the simplified abstract
representations of space in most contemporary agent models and toward representations that
better reflect the ways in which space itself structures and thereby alters social processes. It is
imperative that these issues are explored and that tools are developed to support such research, if
the dangers of working with wholly abstract ‘toy’ models are to be avoided.
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SITUATED SOCIAL ECOLOGY:
AN INTEGRATED DESIGN HERMENEUTIC

D.L. SALLACH, The University of Chicago”

ABSTRACT

For computational modeling and social theory to co-evolve effectively, it will be
beneficial to develop customized design methodologies. This paper integrates several
design techniques into an overall hermeneutic. The intended purposes of the design
hermeneutic are (1) to assure sufficient range in scope from the broadest ecological
context to all relevant physiological assumptions, (2)to facilitate ontological
experimentation, using situation theory where appropriate, and to advance social theory
thereby; and (3) to use behavior design to govern the complexity balance for a given
class of social simulations. Successful application of the proposed design hermeneutic
may facilitate the modeling of meaning-production practicesin social interaction.

INTRODUCTION

First-generation social agent ssmulation has demonstrated that simple rules are capable of
generating diverse aggregate effects (Schelling, 1978; Epstein and Axtell, 1996; Axelrod, 1997).
The insights generated thereby are promising and must be appreciated. At the same time, it seems
unlikely that the epistemological potential of social simulation will be fully realized through
models of discrete agents controlled by exogenous rules.

Scientific revolutions in other disciplines have been accompanied by the emergence of
new conceptua entities such as quanta, genes, and tectonic plates (Thagard, 1992). In a similar
way, social simulation will likely move beyond the premises of folk sociology. In addition, the
ability to ssimulate endogenous agent production and management of meaning is likely to be
necessary to more fully realize the potential of the methodology. Thus, arguably, to facilitate a
prospective breakthrough, future research programs need to be in active dialog with the forefront
of theoretical sociology.

One implication of such an evolution may well be the development of frameworks that
transcend methodological individualism. That is, the extent to which socia entities can be
adequately modeled as discrete agents will need to be explored. While some of the richer
sociological traditions regard the actor as a socidly generated and defined entity
(cf., Forgas, et a., 2001), agent ssimulation models have not addressed such a representation
(Padgett, 2000). Similarly, although Parsonian functionalism posited a normative order that is
effective and largely autonomous (Hilbert, 1992), the second half of the twentieth century is
populated with efforts to comprehend the endogenous emergence of social norms (Garfinkel,
1967, 2002; Collins, 1981b, 2000). These insights have yet to be adequately incorporated in
social simulation research programs (Collins, 1994; Sallach, 2003).
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The present paper introduces a framework, a methodology, and a hermeneutic for
modeling social agents situated in their settings. ‘ Framework’ is intended to convey, not a theory,
but a comparative structure in which a variety of theories can be explored. ‘Methodology’ is
intended to convey an approach to software design that can span the distance between the
hardware architecture and the social world being ssmulated. ‘Hermeneutic’ is intended to convey
amultilevel interactive dialogue capable of realizing controlled models of social complexity.

A magjor purpose of this paper is to introduce a Situated Social Ecology (SSE) design
framework. The SSE framework has three components: (1) an external-internal-external (EIE)
hermeneutic that interleaves ecology, socia interaction, and agent orientation; (2) Layered
Formalism and Zooming Analysis; and (3) Behavior-oriented Design. Each of these components
is well-conceived to be part of such a dialog and, ultimately, aligned with social theory, as
described below.

A DESIGN HERMENEUTIC

The first issue to be addressed is why a design hermeneutic should be the goal of this
discussion rather than, for example, the more prevalent design ‘strategy.’ It has long been
recognized that the richness of social processes is infinite in its detail (Weber, 1949, pp. 72-73).
Thus, an epistemological strategy based on social simulation inevitably imposes simplicity upon
the domain being modeled. Indeed, it is frequently argued that the resulting simplicity is
astrength that prevents resulting insights from being lost in a haze of complexities (Axelrod,
1997). However, there is also an abiding concern that some of the richness thus abstracted away
is highly relevant to an adequate understanding of the process being modeled. Approaching
design as a hermeneutic process emphasizes the importance of capturing the construction,
communication, preservation, and transformation of meaning as a vital, inescapable aspect of
modeling social processes.

The Nature of a Hermeneutic Process

The craft of hermeneutics originates in textua interpretation. Originally applied to sacred
texts, in the modern era the techniques became generalized to literature, historical documents,
and other secular texts (Pamer, 1969; Andersen, 2000). More recently, the method has been
recognized as extending to technically mediated or enhanced communication (Ihde, 1998). In
applying hermeneutics to software design, the present discussion proposes a further
generaization of hermeneutic methods.

Hermeneutic method arises from a mutually defining tension between a communicative
whole and its constitutive parts. The meaning of a sentence, for example, is determined by its
component words, whereas the sense of the words is shaped by the envel oping sentence. Because
the semantic effects flow both upward and downward, there is no privileged starting point for
analysis, which iswhy the procedure is frequently referred to as a hermeneutic circle.

The hermeneutic process extends to multiple layers. Thus, sentences are within
paragraphs that are within Chapters that are within books that are within oeuvres, etc. Both the
larger and smaller layers establish a context that contributes to the meaning of the unit. As
aresult, a small change in one layer, or in the interpretation of a particular layer, can result in
asignificant alteration of meaning.
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A Scale-based Design Hermeneutic

Extending hermeneutic techniques to software or simulation design produces several
desirable results. First, the resulting design process is inherently multiscale in nature. Second,
because hermeneutics is a meaning-capturing method, it lends itself to modeling human
communication, and the associated diversity of understandings (and misunderstandings).!

Whether implicitly or explicitly, the part/whole tension is always scale-based in form.
Both larger and smaller units provide constraints that shape meaning at its own level while, at the
same time, requiring constraints from adjacent (and successive) levels to further disambiguate an
interpretation. In this, the levels resemble the type of complex systems described by Juarrero
(1999, esp. pp. 131-150), in which context-sensitive constraints from below and above together
define the dynamics of the system. The bottom-up constraints define emergent capabilities and
make them available. The reciprocal top-down constraints shape and select lower level
components in ways that facilitate the efficacy of the emergent system. The synergy of the two
processes warrants further exploration (cf., Sallach, 2000).

As a design process, hermeneutics allows the possibility of establishing environments in
which agents, either singly or in coordination, can use constraint programming (Wallace, 2002),
constraint-based coherence (Thagard, 1999), convergence (Agre, 1995), and other techniques to
overcome ambiguities present, by design, in the representation of natural and socia ecologies.
Such capabilities for meaning extraction and resolution will potentially support richer semantic
processes than agent models have heretofore produced.

The EIE Hermeneutic

The focus of the EIE design hermeneutic moves from the opportunities and constraints
inherent in (1) natural ecologies, (2) socia ecologies, and (3) agent mechanisms, and back again.
Because socia dynamics is the primary focus of the method, it begins with representations of an
(artificial) ecology and moves toward agent physiology, passing twice through the intermediate
(and, by design, more complex) realm of social interaction, once on the way in and once on the
way back. EIE is selected? to allow agent assumptions to be relatively simple, while still
recognizing the complexity of the natural and social environments.

The artificial externa (ecological) and internal (physiological) levels can be seen as
defining boundary structures for a given class of
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pp. 192—207), results in models of simple, adaptively constrained societies (Lake, 2000; Kohler,
et al., 2000; Dean, et a., 2000).3

The EIE hermeneutic shapes three moments of the design process: (1) the overall concept,
(2) the formulation of relevant mathematical models (Layered Formalism and Zooming [LFZ]),
and (3) the design and development of behavior-based capabilities. The first moment defines the
qualitative structure of the domain. The second allows experimentation on the aggregate effects
of alternate ontologies. The third defines the nature and grain of agent capabilities. Successive
passes can be used to align and integrate the overall design.

The focus of EIE is scale-oriented, so it passes from the largest phenomena considered
(e.g., cosmologies, ecologies), to the intermediate level (social interaction), to the smallest scale
(cognition, emotion, memory). However, as one first proceeds inward (toward the small), only
the large is known. So the first pass faces social interaction design issues only relative, for
example, to ecological concerns. After the needed cognitive, emotional, and neurophysiological
structures have been designed, and the focus starts to move back up in scale, additional
(individual level) detail can be incorporated at the social interaction level.4 The process is not as
sequential as it sounds, especially since it isin the nature of hermeneutics that one moves up and
down the scale repeatedly until achieving an acceptable level of coherence.

EXPLORING ONTOLOGIES

In the natural sciences, scientific progress has been associated with the identification of
an appropriate mathematical model. In the socia sciences as well, game theory illustrates how a
single formalism can result in a proliferation of productive research programs. However,
guestions of interest in most socia science domains are too complex to be fully axiomatized.
LFZ anaysis was developed, in part, to explicitly address that fact (Devlin and Rosenberg,
1996). Accordingly, it is natural for LFZ to work in conjunction with a controlled strategy of
agent simulation.

An analytical process based on LFZ is summarized as follows®:
1. At each stage of the analysis, define aformalism that is minimal.
2. At each stage of the analysis, utilize minimal precision within the formalism.

3. Refinethe analysis iteratively, increasing the formalism and the precision until
apromising model is obtained.

3 There are also similarities with behaviorism, which posits a direct relationship between environmental stimuli
organism responses.

4 One might, for example, consider Goffman-type questions about how interaction is under constraints to establish,
preserve, and/or repair the “social self.”

5 The present summary draws on Devlin and Rosenberg (1996, esp. pp. 126-150).
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4. When unresolved complications persist, zoom (shift levels of abstraction)
until they can be satisfactorily modeled.

5. At each stage, align the analysis with guiding theories and relevant ontol ogies.

It can be seen that the iterative, multiscale nature of LFZ design is quite compatible with
the EIE hermeneutic. The latter differsin more specifically clarifying the levels incorporated and
the order of their incorporation. It aso differs in explicitly acknowledging the mutual interacting
constraints emanating from various levels. Finally, the EIE addresses the necessity to define
behavioral capabilities. So, while LFZ is compatible with the encompassing hermeneutic, the
latter supplements it with a broader design-oriented focus.

LFZ design is based on and applies the formalism of situation theory (Barwise, 1989;
Devlin, 1991). This formalism has a number of strengths that make it highly appropriate for
social modeling and simulation (Sallach, 2003). First, it controls social complexity by restricting
its models to particular situations. Second, the situations considered are continually being
transformed by the introduction of new actors, definitions, and resources. This allows situation
theory to capture the indexicality of social dynamics, in which the meaning of the same social act
is actively shaped and defined by the context in which it occurs, including prior communications
and acts (Devlin and Rosenberg, 1993; Devlin, 1994).

Defining Situations

The context-sensitivity of socia action has long been addressed by social scientists. One
early contributor, W.l. Thomas (1967, p. 42), famously noted the unigque efficacy of situational
definitions:

Preliminary to any self-determined act of behavior, there is aways a stage of
examination and deliberation which we may call the definition of the situation.
And actually not only concrete acts are dependent on the definition of the
situation, but gradually a whole life-policy and the personality of the individual
himself follow from a series of such self-definitions.

However, as the quote indicates, Thomas tends to focus on stable, cumulative aspects of
situational definitions, including the effects of cultural definitions.

In the second half of the twentieth century, a number of scholars began to emphasize
contingency and emergence in situational definitions (Garfinkel, 1967, 2002; Collins, 1981b,
2000). In the words of Rawls (2002, p. 30), “Every situation has different patterns of order that
are required for the coherence of action within that situation.” It has been suggested (Collins
19814, 1994; Sallach, 2003) that understanding the micro/macro relationship between emergent
situations and large-scale historical structures has the potential to contribute to a breakthrough in
the social sciences.

Consideration of the fluid nature of situations and, in particular, how shared definitions
are socially achieved, disturbed, and restored raises issues concerning the methods and
competencies used in the process by social actors. Such questions suggest a promising line of
simulative research and are considered in the next section.
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Generally, there appear to be two design approaches for exploring the explanatory
possibilities of simulating dynamic situation definition. First, the designer could make available a
variety of prespecified, but possibly parameterizible, situations that could be invoked by situated
agents. These situations might be differentialy relevant to agents based on emotional
commitments, cognitive models, self-interest, and their position within a social structure, as well
as more ephemeral contingencies. This approach would be a natural extension of exogenously
defined agent simulation, while allowing for greater complexities and more ambiguities in the
dynamics of agent interaction.

Second, the design ontology could be specified at a higher level of abstraction, as
supported by situation theory (Devlin, 1991), and allow agent construction of situation
definitions in response to emergent circumstances. This generative strategy would be more
difficult to implement but would have the advantage of representing the process of situation
definition endogenously and, thus, achieve a closer dialog with microsociological theory.

Exploring the possible role of situations within social simulation illustrates one of the
natural strengths of situation theory, but the formalism has broader ontology modeling
capabilities. Diverse entities (individuals) and relationships, and their types, can be distributed at
avariety of spatial and temporal levels of abstraction, providing a formalism that can potentially
be aligned with any social domain of interest. It is this extensive capability that carries the
potential for theory-driven design.

Complex System Dynamics

As a second example, consider the application of models of complex system dynamics to
social system emergence. Drawing on the emergence of cognitive systems from a neurological
substrate, Juarrero (1999) generalizes a basic framework. The core of this generalized process is
comprised of afirst-order process giving rise to a second-order process, which, in turn, constrains
thefirst. In Juarrero’ s terms, constraints at the first level create a repertoire of capabilities that are
available at the emergent level, while the latter selects elements and, thus, reciprocally constrains
the first-order process.

As Sawyer (2001) argues, the emergence of mind from brain can be seen as analogous to
the emergence of social processes from individual action. Applying the complex systems
framework to a social example, the organization of an army coordinates the action of individuals
and, thereby, creates coercive resources that did not previously exist. At the same time, the
(socially emergent) army shapes and selects the individual (first-order) elements that compose it.

The stability of such a process depends on mutually reinforcing interactions between the
two levels. Anything that disturbs the pattern of multilevel interactions has the potential to
disrupt or even disintegrate the emergent army of the example. Among the sources of
perturbation are paralel military emergents that compete, whether for recruits or in conflict that
directly attacks its components.

In natural settings, considered from a microsocial perspective, the skein of
interdependencies for an army, or for the many other social emergents that might be investigated,
is dauntingly complex. One advantage of using agent simulation to apply the model of complex
system dynamicsis the ability to control the complexity of the process under consideration.
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The Interaction Order

A third example of experimentation in ontologies that might prospectively undergird
amore compelling analytica framework is provided by the idea of an interaction order
(Goffman, 1983). As formulated by Rawls, the interaction order is produced locally under the
constraints imposed by mutually constituted intelligibility (1989) and the presentationa self
(1987).

Since Rawls views the interaction order as sui generis, there are issues concerning its
relation to other social entities and processes. The interaction order and social structure, although
operating at distinct social levels, place reciprocal demands on, and are never found in isolation
from, the other. Specific forms of interaction between the two levels might well be clarified by
computational experimentation.

Nor need the three examples be viewed as mutualy exclusive. The interaction order
might provide a layer that mediates between emergent social structures and the socia selves that
compose it. Defining and managing situations might be regarded as essential capabilities of
social agents who are engaged in creating and evolving socia emergents. Such questions are not
resolved here, but they illustrate the potential importance of ontology experimentation.

BEHAVIORAL COMPETENCES

The ethnomethodological critique of standard social science methodol ogies contends that
reducing the empirical to the conceptua results in the complete loss of the emergent social
phenomenon (Rawls, 2002, p. 50). Despite the fact that social ssmulation generates rather than
captures data, it faces a similar methodological issue: how best to design an architecture capable
of emulating the meaning production process. Syntactic or algorithmic models can structure
probability-driven choice points to which meaning can be imputed by human analysts but, in
such models, meaning-conveying, meaning-preserving, and meaning-recovering practices that
are inherent in natural social processes are not endogenous to the ssimulated agent interaction.
The means by which to achieve such a demanding goa remain largely undefined.

The methodology outlined here is designed to capture the multiple considerations that
frame social communication and decision processes. Generation of such contextual contingencies
is a prerequisite to the development of effective models of meaning-production. While it also
remains necessary to control the balance between simplicity and verisimilitude, this can largely
be achieved through the specification of the grain of agent perception and action. In the design of
situated agents, what can be sensed, and the capabilities available in developing a response,
largely determines the level of sophistication of the simulation. This specification of agent grain
can be regarded as the boundary structure for a class of simulations, the analog of experimental
boundary conditions in the natural sciences.

Behavior-oriented design is a form of simulation design that focuses on the management
of multiple simultaneous agent priorities in potentially complex domains (Bryson and Stein,
2001a,b; Bryson, 2001). Accordingly, action sequences and cognitive competencies that may
serve as responses to the opportunities and constraints of natural and social ecologies can be
identified and implemented. The natural ecology, when its elements are relevant, defines
opportunities and constraints relative to which social interaction can focus. Together, natural and
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social ecologies define situations discerned and processed by adaptive agents, situations that
form the context of ongoing social processes.

Behavior-oriented design can be summarized in a series of discrete steps:

1. Specify a ahigh level what the agent is intended to do.

2. Describe likely activitiesin terms of sequences of actions.

3. ldentify sensory, action, and communicative primitives from these sequences.
4

. Identify the state necessary for these primitives, clustering them by the shared
state.

5. ldentify and prioritize goals or drives that the agent might need to attend to
(prototype drive roots).

6. Select the next behavior to implement.

In summary, step recursively down in the level of detail, then step back up.

In the EIE design hermeneutic, agent capabilities are developed relative to the
experimental ontology developed using LFZ modeling. LFZ yields the mathematical models;
through behavior-oriented design, the models become computational .

Ultimately, the goal of the SSE framework is to tighten the connection between social
theory and software design. In addition to the application of endogenous social theories to a
variety of domains, the SSE framework allows their potential integration with broader theories
such as situation (Barwise, 1989; Devlin, 1991) and/or information flow (Barwise and Seligman
1997). Such theoretical cross-fertilization has the potential to contribute to breakthroughs in the
social sciences.

CONCLUSION

Agent simulation requires software and architectures that are a product of the design
sciences (Simon, 1996). As a socia research methodology, the resulting designs must be closely
aligned with the theories and empirical insights that guide them. As substantive insights evolve,
so will social simulation architecture.

The SSE framework developed in the preceding discussion is guided by four priorities:
(1) an integrated multilevel scope, (2) a design process that focuses on the endogenous
production of meaning, (3) mathematically grounded ontological models that support dynamics
arising from contingency and interaction, and (4) the establishment of boundary structures that
can define simulation classes. While design methodologies for social simulation will evolve,
these SSE priorities are likely to have continuing relevance.
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VARIETIES OF EMERGENCE

N. GILBERT, University of Surrey, UK*

ABSTRACT™

The simulation of social agents has grown to be an innovative and powerful research
methodology. The challenge is to develop models that are computationally precise, yet
are linked closely to and are illuminating about social and behavioral theory.

The socia element of social simulation models derives partly from their ability to exhibit
emergent features. In this paper, we illustrate the varieties of emergence by developing
Schelling’s model of residential segregation (using it as a case study), considering what
might be needed to take account of the effects of residential segregation on residents and
others; the social recognition of spatially segregated zones, and the construction of
categories of ethnicity. We conclude that while the existence of emergent phenomena is
a necessary condition for models of social agents, this poses a methodological problem
for those using simulation to investigate social phenomena.

INTRODUCTION

Emergence is an essential characteristic of social simulation. Indeed, without emergence,
it might be argued that a simulation is not a social simulation. However, the notion of emergence
is still not well understood (but see Sawyer 2002). In this paper, we consider the idea of
emergence in a very simple way. We start with a simple model that can be applied to a wide
variety of different phenomena, not just societies, but even atomic particles. We discuss how this
model seems to show emergence and then suggest that to be useful as a simulation of social
phenomena, the model needs to be made somewhat more complicated; and so we explore the
consequences of adding severa refinements. This will enable us to consider a number of
different varieties of emergence. Finally, we draw some conclusions about the notion of
emergence and make a methodological point.

THE SCHELLING MODEL OF RESIDENTIAL SEGREGATION
The example used here is aready rather well known. Schelling (1971) published a paper

in the Journal of Mathematical Sociology proposing a theory about the persistence of racia or
ethnic segregation despite an environment of growing tolerance. He suggested that even if

* Corresponding author address: Nigel Gilbert, Centre for Research on Simulation in the Social Sciences
(CRESS), School of Human Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK; e-mail:
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individuals tolerate! racia diversity, if they also remain uneasy about being a minority in the
locality, segregation will still be the equilibrium situation.

The Schelling model consists of a grid of square patches. In the examples in this paper,
the grid consists of 500 x 500 patches. There are 1,500 agents located on this landscape, initially
at random, with no more than one on any patch. The magjority of the agents, 70%, are green, and
aminority are red. The remaining patches, shown in black in Figure 1, are vacant.

Each agent has a tolerance parameter. Green agents are “happy” when the ratio of greens
to reds in its Moore neighborhood — the eight immediately adjacent cells or patches — is more
than its tolerance. The reverse applies to the reds. So we can calculate in a straightforward way
what percentage of agents are happy, given any particular configuration.

EMERGENCE OF CLUSTERS

If agents are randomly assigned to patches, an average agent has about 58%, or roughly
5 out of the 8, of its surrounding neighbors that are of its own color. In this situation, about 18%

FIGURE 1 Initial Random Distribution
of the 1,500 Agents: 70% Green and 30% Red

1 The choice of the word toleration here is strange. We continue to use it because the literature talks about
toleration. Nevertheless, we find the idea that minorities can only be ‘tolerated’ (rather than, for example,
welcomed or celebrated) slightly repugnant.
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of the agents are “unhappy.” The exact percentage of unhappy agents for a particular
configuration depends on the random distribution of the agents.

In this initial arrangement, there are no dynamics, no emergence, and no patterns of
segregation. We just have an aggregation of cells where the number of unhappy agents can be
explained analytically without much difficulty. Things get slightly more interesting when the
unhappy agents are allowed to move. There are a variety of ways in which this can be
implemented, the simplest being for the agent to select vacant patches at random until a
congenial oneis found. This can result in a phenomenon known as tipping, because when agents
move to a position where they are happy, they may make other agents unhappy. These in turn
will need to move, and so on.

The result is that, with moderate to low values of tolerance, the agents relocate so that
they form clusters of agents all of the same color (Figure 2). The clustering, a feature of the grid
as a whole, has emerged as a consequence of the rules obeyed by the individual agents. The
extent of clustering can be measured by using statistics developed by geographers, such as the
join count or Moran’'s contiguity ratio (Cliff and Ord, 1981; Cressie, 1991). However, we are
only interested here in the fact that clustering has occurred, and this is clear from inspection of
Figure 2.

Schelling showed that clustering occurs when we give the agents any value of tolerance
much above 30%. As noted above, randomly allocating the agents to patches results in an
average of about 58% of an agent’ s neighbors being of the same color. As aresult of allowing the
unhappy agents to move and the emergence of clusters, the percentage of same color neighbors
rises to between 75% and 80%.

FIGURE 2 Emergence of Clustering after Unhappy
Agents Have Been Allowed to Relocate by Random
Walk
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However, once the agents have located themselves in places where they are happy, all
motion stops, giving a static, ‘frozen’ equilibrium. But that is an odd kind of model for
adynamic social world where agents are constantly on the move in some way or other. A more
acceptable notion of emergence as far as socia simulation is concerned is one in which
emergence occurs despite the fact that the agents themsel ves are moving.

To illustrate this idea, John Holland (1975) suggests the physical analogy of the bow
wave in front of a boat moving across water. Water particles constantly flow past the boat, but
the bow wave itself is relatively stationary. However, few conventional definitions or
descriptions of emergence insist on the need for emergent features to be maintained despite
changesin the identities of the underlying elements.

What happens in the Schelling model if the agents are constantly being replaced? Let's
repeat the simulation exactly as before, except that a random 5% of the agents are substituted by
agents of random color at every time step. The clusters remain, despite the fact that after about
20 steps, most of the agents have been replaced by other individuals. Emergent social phenomena
persist, even though the agents themselves may come and go.

VALIDATION

In the United States, the level of residential segregation has remained high, despite the
fact that the income inequality between blacks and whites is decreasing. There are
antidiscrimination laws, affirmative action policies, and generally less discriminatory attitudes by
whites. The Schelling model has been used as an explanation for the persistence of residential
segregation despite al these positive, progressive social policies. Although the model is usually
related to racia discrimination in the United States, there are other examples of residential
segregation where it could be relevant. For example, in many cities in Europe, there are districts
where Chinese or Turkish restaurants are found exclusively; in Mgjorca, there are segregated
communities of English and German immigrants, and there is religious segregation as in
Northern Ireland.

There is an increasing body of scholarship that relates the Schelling model to empirical
data (e.g., Clark, 1991; Portugdli, et a., 1994; Portugali, 1999; Sander, et a., 2000). The
recurring theme of this work is to elaborate the basic model to take more account of the
implications of the fact that the agents being modeled are human and members of society. For
example, the effect of what has been called ‘downward causation’, in which the emergent
clusters cause changes to the behavior of the individual agents, may need to be considered.

The clusters themselves can often act as though they were agents, for example,
neighborhoods can lobby city governments. Moreover, because the agents represent not particles,
but people, they often recognize and name the clusters/neighborhoods, and this might have some
effect on their behavior in ways that affect the development of segregation. The agents in the
basic Schelling model are all exactly the same. What happens if we introduce some degree of
heterogeneity? People have the ability to talk and to interact symbolically. What difference could
that make? In the remainder of this paper, we explore how one might add these complications to
the basic Schelling model.
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DOWNWARD CAUSATION

As we have seen in the basic model, individua actions can lead to emergent features,
such as clusters and neighborhoods, visible at the societal or macro level. But we should also
consider the ways in which such features can influence or constrain individual action. As an
example of downward causation (Campbell, 1974), let us take a typical macro-level effect: the
crimerate. A crime rate is necessarily a macro-level attribute because it is defined as the number
of crimes committed by a population per unit time. A crime rate is not a meaningful measure for
individuals. Let us assume that that cost of a home in each neighborhood depends in part on the
crime rate (housing is cheap in areas with high crime rates) and that the crime rate depends on the
ratio of reds and greens in the locality (the more reds, the higher the crime rate). Let us also
propose that, instead of choosing new locations at random, agents can only move to spots where
they can afford to buy or to rent, so that they are restricted by the property value of the new
location relative to the value of their old location.

Figure 3 illustrates the typical result of running such a model, and its most noticeable
characteristic is that it still has clusters. The poorer reds are forced to stay in their poor red
districts. The richer greens have the ability to move where they want, but they like to be around
other greens in green areas. There are a very few poor greens who are surrounded by reds and
who cannot move to more desirable green areas.

FIGURE 3 Model with Downward Causation

[Background gray shade marks crime rate
(black: high crime rate, low property values;
white: low crime rate, high property values).]
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SECOND ORDER EMERGENCE

People may recognize the neighborhoods in which they are living as having discernible
boundaries, a name, and perhaps even a special history or culture. They may find the
neighborhood particularly desirable for this reason (for example, fashionable neighborhoods in
cities) or particularly undesirable. In other words, not only the researcher, but aso agents
themselves, can detect the presence of emergent features and act accordingly. And this, in turn,
can affect what they do. This idea is known as second order emergence (Gilbert, 1995) or the
double hermeneutic (Giddens, 1986). More precisely, second order emergence occurs when the
agents recognize emergent phenomena, such as societies, clubs, forma organizations,
institutions, localities, and so on, where the fact that you are a member, or not a member, changes
the rules of interaction between you and other agents.

We can elaborate Schelling’'s model in a way that illustrates what one might mean by
second order emergence by allowing patches to be labeled as red or green according to their past
history. The agents recognize what is a good patch for them in terms of the labels that have been
applied. The analogy is with a city district that may be generally recognized to be a good or bad
place to live depending partly on its current characteristics, but also partly on its history. The
result is shown in Figure 4. The picture looks familiar because once again, we have clear
clustering.

FIGURE 4 Model with Second Order Emergence
[The colors of the patches (dark red or green)
show the labels applied to the districts as a result
of the color of the agents that were there
previously or are there now.]
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HETEROGENEITY

In all the models so far, the agents are identical, except for their location and color (red or
green). They all have exactly the same tolerance. One can experiment with either random or
systematic variations in tolerance, to correspond with environmental differences and inherited
class differences.

If the tolerance for individual agents is randomly varied between agents, we get an even
stronger clustering than before. If the tolerance value is arranged to correlate with the color of the
agent, so that reds have a higher tolerance than greens, the reds become much more clustered
than the greens (Figure 5).

How might correlations between tolerance and color arise in real populations? We might
build into the model ideas of socialization, inheritance and class, and evolution or learning.
However, these possibilities are not pursued here.

FIGURE 5 Model with Tolerance Related to Color
(With tolerance at 55% for reds and 25% for
greens, the reds become much more clustered
than the greens.)

INTERACTION

Some of these models have depended on the idea that individual agents can conceptualize
notions of neighborhood, recognize them, and communicate. But that in turn implies that we are
dealing with agents that have some capacity for symbolic interaction. How might we represent
this? There is a developing body of work on ‘tag models (e.g., Hales, 2001; Riolo, et al., 2001)
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in which agents have binary valued tags that can be interpreted in terms of color, ethnicity, class,
education, gender, and so on. The agents act according to their tags and can also perceive the tags
of other individuals.

This is rather like the Schelling model, except that instead of the modeler having chosen
apriori that it is going to be color that marks the difference between the agents, the agents
themselves decide, as it were, which of al their tags will become their significant characteristic.
It could be *color’ or ‘gender’ or something else.

Here is a simple version. Each agent is given three binary tags. Agents are happy only if
their neighbors are sufficiently similar to themselves, where similarity is measured by the
Hamming distance between the agents' tags. The outcome is again a familiar one: the agents are
clustered (Figure 6). However, in this simulation, the feature shared by the agents within each
cluster varies from one cluster to another. This could represent a city in which, for example, one
district is ethnicaly black, another is united because everybody speaks Japanese, and a third is
dominated by stock traders.

FIGURE 6 Model with Agents That Have Tags
(Agents are colored according to the value of their
tags, treated as a binary number.)
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CONCLUSION

In this paper, we have illustrated some of the philosophical discussions about varieties of
emergence, using a very simple computational model. We have tried to be straightforward about
this, because there have aready been some very illuminating athough rather complex
philosophical discussions about emergence in societies (Alexander, et al., 1987; Coleman, 1990;
Archer, 1995; Sawyer, 2002). We have shown that verbal descriptions of types of emergence can
be instantiated as rather simple computational models.

There is aso a methodological conclusion from this exercise. All the models mentioned
here seem to be adequate at some level of abstraction. Although the basic Schelling model is very
simple, it did illustrate a surprising phenomenon: that ‘tolerant’ households could generate
residential segregation through their locational decisions. We then showed that other features
could be added to the model that seem to be fundamental to human societies, such as the ability
to recognize emergent features. However, all the models yielded the same type of clusters of
similar agents. The results of the simulations vary dlightly in the form of the clusters and the
degree of clustering, but not so much that it is plausible to conclude that one must be a better
model of residential segregation than another.

The fact that we have observed emergence in al of these models cannot therefore be the
sole criterion for choosing among them. The Journal of Artificial Societies and Social
Smulation,? of which | am the editor, has published many papers that include an argument along
the following lines: “I have developed and run a model, which shows some emergent features.
The emergent features correspond to features in the real world, and since | have shown the
correspondence of these features with empirical data, my model is therefore correct.” A similar
argument can be found in much of our social simulation literature.

We hope to have demonstrated that this kind of argument is not adequate. One has to
validate a model at both the individual level and at the macro level before one can suggest that
the simulation is a good representation of the social processesit isaming to model.
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DISCUSSION:
OPENING SESSION*

R.K. SAWY ER, Washington University, Moderator

David Sallach: This opening session might be conceived of as being in the realm of
computational social theory. I’'m sure that we are al pleased to get underway, so let me introduce
the moderator of the opening session, Keith Sawyer, from Washington University.

Keith Sawyer: No one is better suited to start the conference than Nigel Gilbert. Agent-
based social simulation is a new paradigm, and most new paradigms, | think, are classic
convergent phenomena. They're not the responsibility of any one individual; rather, they're
collective phenomena. Sometimes it seems as if certain individuals amost single handedly
created the paradigm. If any one person had that claim, Nigel would qualify. He had one of the
first edited volumes on the topic in 1994, and he was the author of a textbook in 1999. A classic
sign that a paradigm is coming of age is the introduction of the first textbook. He's a sociologist
as well as a computer modeling person. It's my honor to introduce Nigel Gilbert, all the way
from the United Kingdom.

[Presentation by Gilbert]

Sawyer : Emergence has been an outstanding issue in all of the social sciences going back
to the 19th Century and the founding theorist of economics, Karl Menger. The founding theorists
of sociology, like Emile Durkheim all struggled with this issue more than 100 years ago. Now it
seems that with this new methodology, we have away to rediscover some of these same concerns
and perhaps also a new way to help resolve and address some of the theoretical problems that are
so long-standing in the social sciences. We have afew minutes now for questions.

Michael North: Mike North from Argonne National Laboratory. Of the models you’'ve
looked at, you said there’s no “best” model. It would probably depend on the question you're
trying to ask; that is, what are you trying to achieve with the model? It would also depend on
including the important features of what you're trying to achieve. In that regard, would you say
that everything else being equal, that simpler is better?

Nigel Gilbert: I’ve gone on record, saying that, yes, in these models simplicity is indeed
avirtue. | aways go for the smple models rather than the complicated ones. | think, though, that
there' s actually more to it than that. Bob Axelrod is presenting a paper in which he's advocating
the KISS principle — Keep It Simple Stupid. | agree with that, but it all depends on what you're
trying to do. Quite clearly, there are policy-related models where simplicity is a virtue, but
achieving that virtue is extraordinarily hard, while still making it relevant for the policy concerns
— if you talk about, let’s say, segregation as amodel, as an issue.

Editor’s note: The discussion sessions were recorded with the speakers' knowledge and then transcribed. The
transcripts were edited for continuity and ease of reading; every effort was made to identify speakers and
interpret comments accurately.
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It would be nice to be able to say that the model we should choose depends on the
question. Unfortunately, in real science, we don’t often have a question formulated before we
start. The question comes out of the research. It's an emergent property, if you like. So using the
guestion to determine how complicated the model can be may not be a terribly helpful answer,
although it’s one that’ s easy to say.

Robert Reynolds: Bob Reynolds from Wayne State University, University of Michigan.
Have you looked at extending the model to include goals for your agents and intentionality? And
do you think that adding that would keep these clusterings, maintain them, or modify them in
some way?

Gilbert: The direct answer to your question is that | have thought about extending. The
reason that | didn’'t extend the model was that | wasn’t sure what | was going to learn from it
because there's a sense in which I've aready done enough to demonstrate the kind of
methodologica point that | wanted to make. But we're still going to get clusters. | would be
amazed if we didn’t, in fact, get certain clusters, unless the goals that we gave the agents were
really very strange goals. So one could say that we can, of course, take this basic model and
elaborate it forever!

Reynolds: In your talk you mentioned “downward causation.” It seems that, if these
clusters are in some sense going to modify the actions of those agents, that giving the agents
some intentionality would be effectively away to do that.

Gilbert: So the fact that an agent is in a cluster affects the kinds of goals that they seek,
for example.

Reynolds: Exactly.

Gilbert: | think that it would be an interesting thing to think about. As a sociologist,
| would then say that’s probably not the end of the matter, because the way in which people
describe what they’ re doing and why they’'re doing it isitself a socially contextual matter. And so
it isn’'t that you can get a set of objective intentions or goals from people, but those goals and
intentions are themselves socially created. There may be end factors or a double layer there as
well.

| suppose that what I’m saying in all of this— and what you're hinting at — is that this
kind of exercise can be useful ssmply as a way of thinking through these kinds of sociological
issues, even if at the end you get yet another boring model with another set of partly random
clusters. It might actually be a useful exercise. Thank you for helping me make that point.

Charles Macal: Charles Macal also from Argonne National Laboratory. In your talk, it
appeared in your concluding statements that you're shifting the burden onto the process or the
notion of validation at both the micro and macro levels. I’'m curious to see if you could describe
the notion of validation in regard to asocial model. Isit possible to validate or prove that a model
is correct?

Gilbert: Yes, | think that's a very good question, which means | probably can't
adequately answer it! Can | put the question back to you? What do you think | ought to mean by
validation? Do you, in raising that question, want to be skeptical about the real possibility of
validation of these models?
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Macal: | would say that yes, | am skeptical about whether it's possible to validate social
agent models and social system models, but | think that there's still a useful or constructive
activity in terms of providing what | would call tests of invalidation to models, because we can
prove that a model is not correct, but we can't prove that a model is correct. Perhaps some
generaly agreed-upon series of invalidation tests that have been applied to a model would be
acceptable to the larger community.

Gilbert: | have alot of sympathy with that position, so perhaps | ought to say that | would
argue that we would need to examine the invalidity of our models at both the macro and the
micro level.

Doug Lauen: Doug Lauen from University of Chicago. I'd like to follow up on the last
guestion. As a person who's just getting into this field, I’m trying to figure out the relationship
between agent-based modeling and equation-based solutions. I’ ve been thinking that perhapsit’s
a way to develop good theoretical expectations; it's a way to build rigorous theory through
deductive thought experiments. The last question was related to how we might work at it the
other way. That is, we run an experiment through agent-based modeling and then look to actual
data, empirical data, to validate the question. So my question is, what is the relationship between
agent-based modeling and basically building theory and making equation-based validations of
this type of procedure?

Gilbert: I'd like to say, and perhaps it is a good question to sum up, that the advantages
of agent-based modeling, in my experience, are that it is much easier to observe emergent
phenomena. It’s only when you start doing agent-based modeling that the kinds of issues behind
my talk become pressing. It is possible to say things about emergence if one is simply, or not
simply, writing theoretically about emergence, or indeed if one is doing equation-based
modeling. Keith is a good example of the former, but | would say that it really hits you between
the eyesif you’ re doing agent-based modeling.
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SOME METHODOLOGICAL ISSUES IN MODELS
OF REINFORCEMENT LEARNING

J. BENDOR, Graduate School of Business, Stanford University
D. DIERMEIER, Kellogg School of Management, Northwestern University
M. TING, Department of Political Science and SIPA, Columbia University*

ABSTRACT

Behavioral game theory has become increasingly popular in socia science applications.
We discuss some of the methodological challenges in using this approach to study
interactive decision making. We discuss its relationship to classical game theory, show
that many existing applications of behavioral models lack empirical content, and provide
a solution to this problem. Finally, we discuss the promise of behaviora models in
solving long-existing puzzles in strategic interactions.

1 INTRODUCTION

The recent decade has witnessed a revolution in economic methodology. Increasingly,
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Perhaps the most well-known reinforcement learning model is the Bush-Mosteller model
(1955). It is widely used in applications in sociology.! It is defined as follows. If an actor who
takes action «! codes the outcome as successful, then

pit+1 (o) = pig(ed) + o[ 1 - pi(ah)],

where o € (0, 1] represents the speed of reinforcement learning or adaptation, given a successful
outcome. Similarly, if the outcome was coded as afailure, then

pit+1(a) = pi t(ed) — Bpi (o),

where € (0, 1] represents the speed of inhibition. Finally, aspiration adjustment can be
implemented by stipulating that tomorrow’s aspirations are a weighted average of today’'s
aspiration level and today’ s payoff (Cyert and March, 1963):

ajt+1=Majt+1 + (1 - M7 g,

where A € [0, 1]. Note that in the case A = 1, the aspiration level is constant and thus determined
exogenously.

The Bush-Mosteller model, however, not only relies on a particular functional form that
specifies propensity and aspiration adjustment, but also requires adjustment to be deterministic.
In contrast, reinforcement models in genera may include probabilistic elements. random
adjustment, random errors, trembles, and so forth. Rather than assuming a specific adjustment
process, we may want to specify axioms that capture various models of reinforcement learning
consistent with the Law of Effect. In Bendor, et a. (2002, 2003), we suggest the axioms
presented in Sections 1.1 and 1.2.

1.1 Assumptions about Propensity Adjustment

.....

denote agent i’ s lowest and highest feasible propensity levels, respectively.

A1l (positive feedback): If i used action al intand if mj t2 gj 1, then Pr[pi,t+1(ai) > pi,t(ai)]
= 1;if pit(e!) < and mj ¢> a1, then Prlpi t+1(a') > pi(al)] = 1.

A2 (negative feedback — direct effect): If i used action al intand if mit < & t, then
Prpig+a(el) < piga)] = 15 if pig(al) > p., then Pripi +a(a') < pig(al)] = 1

A3 (negative feedback — indirect effect): If i used action air intand if j ¢ < gj 1, then
for every other action aL. (where s# 1), Pr[pt+1( ais) >0]>0.

1 For arecent example and further references, see, for example, Macy and Flache (2002).
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Axioms Al and A2 formalize the core idea of reinforcement learning: the propensity to
take an action responds to positive and negative feedback. Note that both A1 and A2 alow for
probabilistic adjustment rules. In addition, A3 requires that no action is a priori excluded; rather,
each other action must be reachable with some (arbitrarily small) probability. Note that A3 does
not require that there be any new propensity vector that i movesto int+ 1 in which all actions
(other than the one used in t) receive positive weight. Instead, there could be a set of propensity

vectors, one in which o gets positive weight, another in which Ociz does not, and so on. Note
also that if an agent has only two actions, then A3 isimplied by A2.

1.2 Assumptions about Aspiration Adjustment

Many applications of reinforcement learning assume a fixed aspiration level (e.g., Macy,
1991). However, positing fixed aspirations precludes an important kind of learning: aspirations
should reflect one's payoff experience. Indeed, to assume otherwise — to keep aspirations
constant in the face of discrepant evidence— seems inconsistent with the spirit of the underlying
research program: agents learn from experience. Thus, reinforcement models should be flexible
enough to capture endogenous aspirations, as expressed in the following three axioms:

Ad: Ifmit=ajt, then Pr(aj 1 =aj ) = 1.
AS: If mj ¢ > & ¢, then Pr(aj ¢ < aj t+1 < mj ) = 1.
AB: If 7ij t < g t, then Pr(mj < & 41 < @y ) = 1.

In addition to rules on propensity and aspiration adjustment, reinforcement models aso
may want to allow for inertia. That is, while agents learn by experience, these codings might not
invariably lead to adjustments in propensities or aspirations (the agent may be engaged with other
matters). With some (perhaps very small) probability, agents may not change their propensities or
aspirations. Including randomness and inertia has two benefits. First, it allows the model to
capture more general behavioral assumptions. Second, these two features also dramatically
enhance the model’s predictive power. However, to see this second consequence, we need to
define the explanatory concept of reinforcement learning models.

2 EQUILIBRIA

When formally analyzing a socia system, we first need to specify the possible states of
the system S In a norma form game, these are, for instance, the strategy combinations.
Deterministic theories (such as classical game theory?) then identify a set of predicted outcomes
from the set of possible states. In its ssimplest form, an explanatory concept E is a correspondence
that selects from each set of possible outcomes S of a collective decision process a (possibly
empty) subset E(S). In empirical terms, an observed outcome in E(S) is consistent with the
theory, whereas an outcome outside of E(S) is not. The set E(S) thus constitutes the empirical
content of the theory. Note that E(S) need not be a singleton; that is, the theory may not predict a
unique outcome.

2 For the moment, we consider only pure strategies. The issue of mixed strategies is discussed below.



60

In identifying the predicted set, different theories rely on different features of the social
system. Classical game theory, for example, assumes that each socia system can be
represented as a game consisting of a game form and preferences for each actor.3 In the case
of norma form games, the game form consists of a finite set of players N, and for each
agent, i € N is a nonempty set Zj of actions available to i. Hence, T :=XjeN Xj Serves as
the state space S. Preferences are usualy given by a von Neumann-Morgenstern utility
function for each agent i:uj: X — R. Thus, a norma form game is given by a tuple

[ ;
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consistent with those original propensities. Aspirations, in turn, must be consistent with payoffs
generated by a given propensity vector. Thus, the combination of propensities, aspirations,
actions, and payoffs form an equilibrium in which all these different elements reinforce each
other.

Definition 2: A tuple (pj t; & t)i isan SRE if for al i, t, and al:
(i) pi t+2(ed) = pi t(ed)
and
(ii) & t+1 = ai .

We say an outcome is stable if it is generated by an SRE. In an SRE, the state space now
consists of tuples (pit; ajt)i. An SRE thus induces a (possibly degenerate) distribution over
outcomes determined by (pj ¢)i. Only in the case of pure SREs (i.e., for each i an o' exists such
that for all (t: pjt (a') = 1), do we have a well-defined (induced) explanatory concept over X.
This limits general existence properties for SRES.® In addition to the parameters N, (Zi)ie N, and
(uieN, such an explanatory concept would also depend on the rules for changing propensities
and aspirations.

As discussed above, explanatory concepts can be deficient in two ways. In addition to the
lack of general existence properties, they may lack empirical content. As shown in Bendor, et al.
(2002), this is the case for SRE. Consider the following very general axiom on positive
reinforcement.”

Axiom 1 (A1*): For al i, t, and action of chosen by player i in period t, if 7t 2 ajy,
then pj t+1(a') 2 pit(a).

We can then show the following two theorems:

Theorem 1 (Bendor, et al., 2002): Consider any normal form game in which players adjust their
action propensities by any arbitrary mix of adaptive rules that satisfy Axiom (A1*) and where
aspirations are exogenoudly fixed. Any outcome of the stage game can then be sustained as a
stable outcome by some pure SRE.

Theorem 2 (Bendor, et a., 2002): Consider any normal form game in which players adjust their
action propensities by any arbitrary mix of adaptive rules that satisfy Axiom (A1*) and adjust
their aspirations by any arbitrary mix of rules that satisfy Axiom (A4). Any outcome of the stage
game can then be sustained as a stable outcome by some pure SRE.

Thus, any reinforcement learning model satisfying axioms (A1*) and (A4) has no
empirical content.

6 See Bendor, eta. (2003) for examples of 2x 2 games that only possess equilibria with pure propensities.
Examples include Chicken or the Prisoners’ Dilemmafor certain parameter values.

7 Notethat (A1*) is weaker than (A1).
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It is worth noting that both theorems have very large domains in severa important
respects. First, they hold for any number of players, including one-person decision problems.
Second, each player can have any number of actions, finite or infinite. Third, the game can be
symmetric or asymmetric. Hence, the players can, for example, have completely different sets of
actions. Fourth, the results do not even require that players continue to use the same adaptive rule
over time: a person could switch to different methods of adjusting his/her action propensities or
aspirations, provided only that new rules continue to satisfy Axiom (A1) and Axiom (A2),
respectively.8 In particular, the Bush-Mosteller model satisfies both axioms.®

3 LIMITING DISTRIBUTIONS

A possible solution to the methodological problems of using SREs as explanatory
concepts is to give up equilibria as explanatory concepts altogether and use a stochastic process
approach. That is, rather than identifying a set of states as the empirical content of the model, we
can use a set of probability distributions. That is, we mode reinforcement learning as a
(stationary) Markov chain and then use the chain’s stationary distributions as our explanatory
concept.

Specifically, for each i and t, we assume that there is a finite, time-invariant number of
propensity levels (not necessarily the same for each individual i). To represent random propensity
adjustment, we define for each i afamily of random variables { P; {} = N with values drawn from
the list of feasible propensity levels. Propensity adjustment then corresponds to a (stochastic)
dynamic process. By putting point mass on one of the possible realizations, we can aso capture
deterministic adjustments (e.g., the Bush-Mosteller rule).

As in the case of propensities, we assume that for each i and t, there is a finite, time-
invariant number of aspiration levels (not necessarily the same for each individual i). Again, we
allow for random adjustment (with point mass in the case of deterministic adjustments). So,
formally for each i : { Aj t}ten is afamily of (possibly degenerate) random variables. We assume
that { Pj t}te N and { Aj t}te N @re mutually independent stationary processes.

A third potential source of randomness can originate from stochastic payoffs (i.e., the
assumption that the payoff to a player is not completely determined by the choices of al players,
but also has a random component). That is, payoffs are modeled as a nondegenerate (conditional)
probability distribution with finite support for each action profile. For each action profile
outcome o, we denote realized payoffs by z;j t(0) with corresponding stationary random variables

IT;. Let zj(0), denote agent i's minimal possible payoff given outcome o and 7; (0) her maximal
payoff. For example, in the two-person Prisoners’ Dilemma (PD) =t (C, C) denotes agent i’s

payoff at timet, given that both agents have cooperated. We assume that payoff redlizations are
mutually independent across agents and time.

8 Indeed, Theorem 1 is even more genera. In contrast to Theorem 2, it also alows for changing payoffs. See
Bendor, et a. (2002) for details.

9 Bendor, et al. (2002) prove an analogous result for theories of satisficing.
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Different payoff assumptions then correspond to different restrictions on the respective
distribution, such as assumptions on the ordering of expectations or the supports of the random
variables. These restrictions can be applied to different aspects of the distribution. For example,
we can require that each agent’s expected payoff from mutual cooperation in the two-person
PD is strictly higher than the expected payoff from mutual defection. Formally,

E[1T; (C, C)] > E[I]; (D, D)].

Alternatively, we can assume that distributions are ordered in terms of their best or worst
possible realizations. For example, we can assume that each agent’s maximal payoff from mutual
cooperation in the two-person PD is strictly higher than the maximal payoff from mutual
defection:

7 (C,C)> 7, (D, D).

Of course, which one of these assumptions makes sense depends on the phenomenon being
modeled.

We can now describe afull cycle of learning. In each period t, an agent is endowed with a
vector of propensity levels pj + and an aspiration level g «. Initialy (i.e., for t = 1), these levels are
assigned arbitrarily. Given the realized action of each agent, each agent receives a randomly
drawn payoff conditional on the outcome of the election and her own action. We assume that
propensity adjustment is inertiadl with probability ¢, >0 and aspiration adjustment with
probability €5 > 0, and that these probabilities are i.i.d. across agents and periods. This leads to a
propensity adjustment with probability 1 —ep and to an adjustment of the agent’s aspiration level
with probability 1 —e&a. So, with probability eaep the agent is completely inertial.1® We assume
that agents behavior can be described by some (not necessarily the same) rules for propensity
and aspiration adjustments that satisfy axioms (A1) through (A6).

Our model then defines a discrete-time, finite-state Markov process. That is, we have a
family of random variables {Xt : t € N}, where Xt assumes values on the state space
S=xXj=1,..NS, and § consists of elements of the form (pj, aj) =: 5. Generic states are thus of the
form (pi, aj)i=1.... N, denoted s. Note that given the independence assumptions on {P; t} te N and
{Ai thHen, Pr(Xt = sls) = Ilj=1,...N Pr(X! =sijls), where {X!} is the (decomposed) family of

random variables assuming values on §. Since transitions { P; t}te N and { A t}te N are stationary,
we have a stationary Markov process.

Whereas (classical) game theory uses an equilibrium approach as its explanatory concept,
our behaviora approach wuses probability distributions over states of the form
(pi, &) =: 5. Note that any such probability distribution induces a probability distribution over X.
We now need to investigate the properties of this process.

Bendor, et a. (2002) show that, under certain mild conditions, the stochastic process is
ergodic: it has aunique limiting distribution. Specifically, we prove the following result.

10 Note that an agent may be inertial with respect to only propensities or aspirations or both.
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Theorem 3 (Bendor, et al., 2002): An aspiration-based adaptive process has a unique limiting
distribution if any of the following conditions hold:

1. Action trembles. With a positive probability (which is i.i.d. across periods
and independent across players), player i, instead of doing what he intended to
do, “experiments’ by randomly playing some action given by a totally mixed
vector of probabilities over feasible actions. (This vector is i.i.d. across
periods and independent across players.) Further, in the stage game, thereis an
outcome o in which nobody gets his minimal payoff (i.e., zj(0) > z; for al i).

2. Extreme propensities excluded: Neither O nor 1 is a feasible propensity
value for any action for any player. Further, in the stage game, there is an
outcome in which nobody gets his minimal payoff (i.e., zj(0) > z; for al i).

3. Stochastic payoffs. Every vector of actions produces a (hondegenerate)
distribution of payoffs for every agent, where each distribution is finitely
valued. Payoffs are i.i.d. across periods and independently distributed across

players.

4. State trembles: With positive probability (again i.i.d. over periods and
independently across players), i's state can randomly tremble to any
neighboring state on his grid.

Thus, we not only can ensure existence, but also uniqueness. On the other hand, the
explanatory concept is inherently probabilistic. While this may actually be an advantage for
empirical work, it does make a comparison with the results of classica game theory more
difficult.

4 COMPARISON WITH CLASSICAL GAME THEORY

To facilitate a comparison with classical game theory (e.g., Nash equilibrium), it is useful
to use an equilibrium concept defined on X. This can easily be derived using the following
approach. Suppose we use the Bush-Mosteller rule with state trembles (i.e., an instance of case 4
in Theorem 3).11 Now consider an initial tremble probability and then gradually reduce it toward
zero, holding all other parameters constant.12 This yields a sequence of (unique) limiting
distributions and their associated statistics (e.g., the population’s average propensity to
cooperate). As the tremble probabilities get sufficiently small, by continuity, further diminutions
in these probabilities can have only negligible effects on the associated limiting distributions. In
short, as the trembles go to zero, the limiting distributions converge. In the limit, we are left with
adistribution that assigns non-zero probability only to finitely many states (often a unique state).
However, when the tremble probability is exactly zero (not arbitrarily small, in the limit), the
corresponding learning rule would be subject to Theorem 2. That is, it would lack empirical
content.

11 Similar approaches can be defined for all versions of stochastic reinforcement learning.

12 This approach corresponds to Foster and Young's (1990) concept of a stochastically stable state. However, in
contrast to our reinforcement learning model, they consider perturbed best response dynamics.
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This approach again leads to an explanatory concept defined on sets of states, which
allows us to directly compare its predictions with the predictions of classical game theory. As we
show in a series of related papers (Bendor, etal., 2002, 2003, n.d.), the predictions are
fundamentally different. That is, in contrast to other forms of learning (e.g., Bayesian learning,
perturbed fictitious play),13 reinforcement learning cannot serve as a behavioral microfoundation
for Nash equilibrium. This is true both for point predictions and for comparative analysis. For
example, as shown in Bendor, et a. (2003), reinforcement learning in general does not select
Nash equilibrium in 2 x 2 games like Chicken or PD. In PD, for instance, reinforcement learning
may select the strictly dominated strategy combination (C, C) asthe most likely state.

Asin classica game theory, we can conduct comparative statics analysis, that is, change
the parameters (e.g., the payoffs) of the game form, and then investigate how the model’s
predictions (Nash equilibria, in classical analysis; limiting distributions, in our case) change in
response. Consider the case of mixed Nash equilibria versus mixed propensities. One of the most
notorious predictions of classical game theory is that in a mixed strategy equilibrium an agent’s
mixing probabilities do not respond to changes in his payoffs, but to the changes in his
opponent’s payoffs. This does not hold in reinforcement models. In those models, each agent’s
payoff changes alter his or her own propensities.14

5 CONCLUSION

This paper discusses some methodological issues in models of reinforcement learning.
We show that a plausible variation of equilibrium analysis (Self-Reinforcing Equilibrium) due to
Macy and Flache (2002) lacks empirical content. We then show that a stochastic version of
reinforcement learning allows us to make a unique, but probabilistic, prediction. This insight
permits us to define an induced equilibrium concept that can be directly compared to the
predictions of Nash equilibrium. We then discuss differences between reinforcement learning
and the classical analysis of games. That is, reinforcement learning offers a conceptualy and
empirically distinct alternative to the classical, rational choice-based approach. This suggests that
we can use reinforcement learning modes to solve persistent puzzles in the application of game
theoretic models to empirical phenomena. Examples include cooperation in the Prisoners
Dilemma (Bendor, et a., 2003) or the solutions to the turnout paradox in models of electoral
participation (Bendor, et a., n.d.).
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VIABILITY OF COOPERATION IN EVOLVING INTERACTION STRUCTURES
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ABSTRACT

The emergence and sustainability of cooperation are examined in multiperson local
public good provision games in which partner selection is endogenized. The games take
place on a socia network, that is, a collection of players, each of whom is acquainted
with a subset of the other players (i.e., “partners’). The network evolves over time as
players sever ties and create new ties among themselves based on who their current
partners recommend. The share of contributors of the public goods is analyzed, with
aspecific focus on the explicit dependence between old and new ties. The interaction
structure necessary for cooperation and cooperation is shown to co-evolve in the system.

1 INTRODUCTION

A modern economy is characterized by interaction, both direct and
indirect, between individuals. Three aspects of thisinteraction are important. First,
individuals interact in different ways. Second, agents learn over time. Third,
interaction takes place through networks. — Kirman (1997, p. 340)

This paper attempts to capture Kirman’'s view of the economy by focusing on the three
aspects addressed above. We explicitly model (1) players interacting on multiple levels,
(2) players learning over time, and (3) players interacting through a network. These three aspects,
taken together, areintimately related to the four important features in our framework:

* Agentinteractions are local.

* The decision process of an agent for the interaction (that is, the agent’s
strategy) is based on local information.

* An agent’s decision process is shaped by his neighborhood (i.e., the local
environment of other players) in which he resides.

» Thelocal environment of an agent is shaped by the agent’ s decision process.

The relational structure of an agent (vis-avis the other players) and an agent’s
preferences have simultaneous feedback to each other. Thus, we incorporate both an agent’s
relational structure into the decision-making process and the agent’s decision-making process
into the evolution of the relational structure.

* Corresponding author address: Alexander Peterhansl, Department of Economics, Columbia University,
1022 International Affairs Building, 420 West 118th Street, New York, NY 10027; e-mail: apll@columbia.edu.
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This interplay between strategy and structure! is redly a restatement of the interplay
between micro- and macrostructure that has long been recognized in economics and the social
sciences in genera (see Tesfatsion [2002] for references). We are interested in investigating this
interplay between micro- and macrostructure from an evolutionary perspective. That is, given a
few simple adaptive rules, how do strategies and structure co-evolve?

In the following sections, we approach this problem by investigating it in the context of
providing local public goods. In particular, we present a new model for studying the emergence
and sustainability of cooperation in the game. The literature on the sustainability of cooperation
has looked at a number of mechanisms that yield sustained cooperation (see Eshel, et al. [1998]
for references). What remains uninvestigated, however, is the sustainability of cooperation in
apopulation evolving in its strategy and its structure.

This paper takes Kirman's idea of the importance of the network to the extreme. It does
so by incorporating social structure into the agent decision problem. Thus, we offer one
formalization of Mark Granovetter's embededness argument (Granovetter, 1985). Raub and
Weesie (1990) and Montgomery (1998) offer two additional formalizations of embededness. Our
model has elements of both of these approaches, though we do not discuss this here. In a sense,
we are ‘socidizing’ the agent decision problem and show that ‘socialization’ can serve as an
important coordination mechanism.

2 THE EVOLVING NETWORK AND PREFERENTIAL TRIAD FORMATION

This section briefly and informally describes the network of players and how the network
evolves, as ties are severed and created among players. The centra issue in this ‘rewiring’
process is how to evolve the network contingent on agent preferences. Because our algorithm is
quite particular, this section serves as a narrative prelude for the formal presentation in Section 3.

Interaction among players in the population takes place between players, each of whom
interacts with a number of partners, a subset of the other players. The connection between a
player and a player’s partners does not need to be spatialy interpreted. It is meant to serve as a
more general framework of aplayer’srelational structure relative to the other players.

Players have the ability to evaluate and change their partners. In other words, players are
not passively subject to their initial partners but can take active measures to alter their
environment so as to surround themselves with more suitable players.

Players have opinions of their partners. When players update their partners, they take two
pieces of information into account: (1) the opinions they have of their partners and (2) their
strategy for the game. Together, these determine which partner is least desirable.?2 The tie to this
partner will be severed and a new partner will be sought out.

1 Here, we use strategy in a general manner, that is, strategy that determines a player’s actions from one period to
the next. Structure is also used generally and refers to the relational structure among agents. It is, in short, the
topology on which the agents reside.

2 The candidate link to be served is actually least desirable for both players giving up the link, as discussed in
Section 3.
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The process of new partner selection is based on “preferential triad formation.” The triad
is a fundamental sociological concept that looks at a subset of three actors (players in our case)
and the possible connections among them. Our algorithm is inspired by balance theory and the
idea of trangitivity: if player i likes player j and player j likes player k, then player i will most
likely meet and like player k3 The economics literature (e.g., Jackson and Watts, 2002) tends to
have endogenously formed new connections to random agents. We believe that our processis a
meaningful way to break out of this assumption of randomness. Evolving social connections are,
after al, characterized by their distinct non-randomness (see Figure 1 for an example). Playersii
and j interact with one another. Players j and k also interact with one another. If al of these
players have high opinions of each other, then our algorithm stipulates that it will be very likely
that playersi and k will also forge a mutually productive interaction.

> P

FIGURE 1 Preferential Triad
Formation

3 SETUP

Games are played on a network, as represented by an undirected weighted graph, where
players are represented by vertices, and connections among them are represented by edges. The
graph at timet, Gt = {V, E}, is described by a set of players (vertices) V={1, 2, 3, ..., n} and a
set of weighted connections among them (edges), E; = {(i, ], pij¢) |1.] € Vispjjr€ (0, 1)}. The
set of players connected to player i is that player's partners and is denoted by Nt The
cardinality of N,tIS referred to as the “degree” of vertex i, k; = |N,t| At any time't, a number
of games are being played on the graph. In agame, players play only against their partners.

Players have opinions of their partners. More specificaly, al players rate the desirability
of their connection to their partners. This is modeled with pjj i 1
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players opinions of each other has a negative impact on mutual desirability. In addition, a higher
discrepancy exacerbates this negative impact.

Games on the network are driven by two adaptive rules. One rule determines how
players partners evolve. We refer to this rule as the “partner updating” rule. Another rule
determines how players strategies are defined given their partners. We refer to this rule as the
“strategy updating” rule. Players strategies and partners come to bear on one another in alocally
played game. We refer to the game as “local interaction.” Each of these is discussed in the
following subsections.

3.1 Local Interaction

Players play a “local public good provision” game with their partners. In each period,
agents receive an endowment ¢ = 1, which they can choose to contribute to the public good in
their neighborhood. If a player contributes, the net cost of the contribution is c. This contribution
generates a benefit of b > 1 that is shared equally by all of the player’s partners.4 Since the net
benefit of b strictly outweighs the net cost of 1, efficiency requires everyone to contribute. From a
player's point of view, however, not contributing always yields a higher payoff (that is, 1)
regardless of the actions taken by its partners. Contributing is strictly dominated by not
contributing.

A player schoice of actionsat timetis Ay € {0,1}, where A;; = 0 is “do not contribute,”
and A| = 1 is “contribute’ to the public good based on the player's type (or strategy),
Tit € (0 1) and realized action of partners A ; _ 1 in the previous period:

YieN:i; 1 Ajt-1
N 0 if JeNj 17 <7t
Atr= Ki t—1 ’

1 otherwise

For local interaction, we define a player’s realized action A; € {0,1}, which is the action
determined above — subject to a“trembling hand” probability of making a mistake. If a player’s
strategy leads that player to contribute, there is a probability A < (1) that it will not contribute,
and vice versa.® The dynamics of type (strategy) is discussed in Section 3.2.

Thus, the total payoff to player i at timetis:

iy =c(1-Ay)+ z _A]t @)

JENII ]t

It is simply the sum of the player’s period-to-period endowment c (if it chooses not to
contribute) and the benefit received from the partners, should they choose to contribute. The

4 Thefact that ¢ isthe net cost of contributing is merely asimplification of the game for our purposes.

5 Thevalue of A; gisrandomly determined.
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game is a variant of the widely studied multiperson prisoner’s dilemma game with local
interaction.

3.2 Updating Strategy

Players update their choice of strategy by observing how they and their partners did by
contributing or not contributing in the rounds of play.

Each player tracks two variables for strategy updating. These variables,
ﬁﬁ and ﬁi',\‘tc, define the average payoffs from contributors and noncontributors, respectively,

for players and al of their partners. These variables represent one way to capture how one action
is doing compared with the other in terms of payoffs to players. The difference in average payoffs

from noncontributors and contributors is defined as Aj; = TNC— 7. On the basis of this
difference, player i’ s strategy at timet is determined as follows:

1

t t-s,.
l+e_25205 Ais

Tit+l=

where 6 € [0,1] is a discounting coefficient, and the initial strategy T; 1 lies in the interval
[0.05, 0.95].6 If player i observes that, on average, contribution fares better, then the player
becomes more likely to contribute by lowering 7, and vice versa. In case either strategy’s average
payoff is equal, the strategy becomes closer to the neutral value 0.5. This updating ruleisin line
with the one used by Eshel, et al. (1998).

3.3 Updating Partners

The updating of playersisatwo-step process. Step 1 involves losing a relationship, which
consists of removing a connection between two players. Step 2 is the creation of a relationship,
which consists of adding a connection between two players. Each of these stepsis carried out for
al players with a particular frequency. Section 3.4 describes these updating rates and their
importance in the results in more detail.

3.3.1 Opinions and First- and Second-degree Mutual Desirability

For player i, the opinion of partner | is defined as follows:

1

_zgzoat—sb(’*iﬁ_i] | @

Pij t =

1+e kj’s k

6 Based on the randomly determined T, ;, the corresponding A;  is assigned.
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The pjj + depends on the discounted sum of the surplus that player i has received from partner j
above what an average contributor in the system can provide,

1
09" Jsi ,
e kis K

where § € [0,1]. Thisisto capture the idea that one would like to interact with contributors with
less partners. How does one define the maximum number of partners a contributor can have
without lowering one’s partners’ opinions? One way is to let each player use local information in
determining this threshold.” Another way is to derive the threshold from some globa parameter
of the model. We take the latter approachg and set the threshold to the overall average number of
partners each player hasin the system, k .

On the basis of two players opinions, we define first-degree mutual desirability among
them, ;Sij,t € (0,1). It characterizes how strong the players feel about each other:

Pijt = (PijtPji,)Y? - 3)

First-degree mutual desirability is only defined for players who are directly connected to each
other and thus are partners.

Next we define second-degree mutual desirability between two players i and k who are

connected via a set of mutual partners M= N;; N th We cdl a player k for whom

Mikt# ¢ and k ¢ N,t a second-degree partner of i. The set of such players is denoted by N,t
(see Figure 2 for an exampl e):

2 N " 1
Pik,t =WZWEM”(J (BimtAmi,t )2 - (4)

Second-degree mutual desirability is defined for players that are separated by one player. It can
be thought of as the mutual opinion of two players who have been referred by a common friend.

3.3.2 Losing a Relationship

Losing a relationship is simply based on first-degree mutual desirability. The tie is
severed® to a partner for whom Min[p;;+ — 74 <0. When the relation is severed, the agent

creates a new relationship with another agent in the population. This process is governed by the
chain of personal references and is described below.

7 For example, the historical average of the benefit the player has received from its contributing partners.
8 Asthe total number of edges stays constant over time, this approach is robust.

9 |If there is more than one such partner for a player, arandom tie among those will be severed.
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FIGURE 2 Sample Graph Nodes (These nodes
represent players, and edges connecting two nodes
represent an active relationship between two players.
The left oval encloses player 1's partners,

N1t ={23,4,5}. The right oval encloses player 1’'s
second-degree partners N1t ={6,7,8,9}. The weights
of the edges are mutual desirabilities, as discussed
above.)

The strategy of a player can be interpreted to reflect the player’'s restlessness and
dissati sfactiomswilthenhsghetraepl ayer’ s t i t» the higher the willingness to change
partners. In addition, a high value for t;; can reflect a player's opportunistic and egoistic
character, which nialesathat hahapbayandeas aeen below.

cating a New Relationship

e creation of a nevedréptisacang-dsggesemutual desirability.
)sng relation
Ni¢ such that Max[ﬁik,t—fi,t]>0, is
established.10 If no such playersiadedempdasimers) gaaew relationship is
tween player i and player h, who is randomly chosen from the rest of population. This

n alows the formation of new ties to depend on the existing sets of ties. In previous
writlepdatenbefnexisting ties. 1 The initial pikt = Puit= Pikt

10 The substraction of 7 is to incorporate the tolerance level, which determines the loss of relationship in the
creation of arelationship.

11 For example, Jackson and Watts (2002) consider randomly chosen ties to be severed or created by revealing
information of the two involved parties to each other. The exception is Watts (1999) by whom we were inspired.
Watts does not, however, consider the simultaneous evolution of strategies and network structure.
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will be set to pjy if anew partner is from the second-degree partners, otherwise, pip 1, ppi » ad
Piht A€ set 10 0.5,

When 7; { is high, a player i is more likely to find a new partner outside of the second-
degree neighborhood. Given that t;; represents how opportunistic or egoistic player i is, it is
more difficult to create a mutually agreeable relationship among second-degree neighbors who
have some information about player i. Asaresult, player i must resort to other people.

3.4 Updating Rates and Asynchronicity

In each time step of the game, al players are selected in a random order, and their
strategies and partners are updated probabilistically. The results of the earlier updates are utilized
for players who are updating later. This asynchronous updating is especially relevant in the
partner updating process in which, in case the relationship is lost, the partner involved should
know about it when it is his turn to update partners. In each time step, the players partners are
updated with probability vp, and the players strategies are updated with probability vg The
ability to control the partner and strategy updating speeds of the players— an important aspect of
this model — is discussed below.

4 RESULTS

Our setup focused on providing a general definition of a topology: an undirected
weighted graph, or what we call a network.12 All previous topol ogies on which games have been
analyzed are subsumed as specia cases of this setup (i.e., rings, lattices, etc.). The motivation
behind our broad definition was to allow us to investigate the sensitivity and dependence of
cooperation on the structural parameters of the environment in which it occurs. How does
cooperation fare in structureless environments (i.e., random graphs)? How does cooperation fare
in more structured environments? What are the structural conditions for cooperation? Can they
be endogenously created to bring about cooperation? The initial results for a number of these
guestions are provided in the following subsections.

4.1 Structural Measures

We utilize two simple measures of graphs as indicators of “structure” in our network: the
clustering coefficient of graph and the variance of the degree distribution of the players.

The clustering coefficient of a player measures how densely the partners of that player are

connected. It is defined as follows. The clustering coefficient of vertex i, vy, characterizes the
extent to which vertices adjacent to vertex i are adjacent to each other. It is defined as

BN
(et
3)

12 |n this paper, the words, network and graph, are used interchangeably.
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where | E( Ni)| is the number of edges within the neighborhood of vertex i and [KZJ is the total
number of possible edges among them. The neighborhood of vertex i in our setup is partners of
player i. This is the probability that two vertices in Ni will be connected. The clustering
coefficient of the graph vy is y; averaged over all the vertices in the graph.1® The clustering

coefficient for the graph takes a value between 0 and 1; y = O implies that no neighbor of any
vertex i is adjacent to any other neighbor of i, and y = 1 implies that the graph consists of several
disconnected but individually complete subgraphs.1#4 Also, for a random graph with nvertices and
average degree k , the clustering coefficient is approximately k /n .15

The second measure, the variance of the degree distribution of the players, is derived
from the distribution of the number of partners that each player has. Since the total number of
edgesin the graph is constant (it is a parameter of the setup), the first moment of this distribution
is fixed. The second moment, however, gives us a measure of how the number of partners varies
from one player to another.

4.2 Structure and Cooperation in a Static Environment

This section investigates the relationship between graph structure and cooperation in
agraph in which players partners are fixed from the outset. Thus, players do not change their
partners during play.

Graphs in this environment are generated by using the B model of Watts and Strogatz
(1998). The B model generates a graph by starting from a ring with degree k and randomly
rewires each edge with probability B. For small values of B, the model generates a graph with
ahigh clustering coefficient and low-degree variance. For larger values of 3, the resulting graph
approaches a random graph (low clustering coefficient and high-degree variance). For each value
of B, we repeat the following process 100 times: generate a graph and let the game be played on
the graph starting with 50% of players contributing and a uniformly distributed strategy lying in
the interval of 0.05 and 0.95. We measure the clustering coefficient of the graph and variance of
degree distribution as well as the steady-state share of contributors for each realization and
average them over the 100 realizations.

Figure 3 plots the steady-state share of contributors (the percentage of the number of
players contributing) for an increasing clustering coefficient generated by lower values of 3. Each
line represents a different benefit-cost ratio used (b = 6 and 12). We observe that the amount of
contribution is sensitive to the clustering coefficient. Observation 1 summarizes this statement.

Observation 1. There is a positive relationship between the clustering coefficient of a fixed
network and the percentage of steady-state contributors.

13 This definition is taken from Watts (1999), p. 33.
14 A graph is complete when every vertex in the graph is connected to every other vertex in the graph.

15 Thisisthe probability of the number of random edges that will be in a neighborhood of size k.
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Clustering And Contribution
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FIGURE 3 Clustering and Contribution — Steady-state Share of Contributors on the y Axis
and Clustering Coefficient on the x Axis

In addition, the different benefit-cost ratios fall into a rough order with b = 6 on the
bottom and b = 12 on the top. Contributions from generous players (who have alow value for 1)
bring about large benefits for their partners. These partners then evolve into generous players,
and clusters of contributors are formed. With larger benefits coming from an increase in b, these
clusters are easier to form.

For clustering coefficients below 0.5, it is not possible to sustain cooperation at the high
initial level of 50%. Except for the regime of high benefit-cost ratio (b = 12) and high clustering
coefficient, the number of contributors in the steady state falls to levels considerably below 50%.
The intuition for this follows the reasoning above in reverse. The benefits players receive from
their partners are not sufficient to turn them into generous players. As opportunistic players, they
generally do not contribute.

From Figure 3, we conclude that structural parameters have an important influence on the
steady-state share of contributors in local public goods games. The highly structured topologies
used in the literature (associated with high cooperation, in line with our results) should be
regarded with caution. They represent a special case among an array of structural possibilities.

4.3 Emergence of Structure |

Another important feature of our setup (beside the generality of the topology) is the
ability for players to update their partners by losing ties and creating new ties to players. In this
case, the system has the potential to evolve its topology in a directed manner (via preferential
triad formation), according to the rules established above.

The results presented in this section and in Section 4.4 are 50 realizations of graphs that
are structureless at the outset. That is, we start with random graphs and iterate them for
5,000 periods. In contrast to Section 4.2, the results here (and in Section 4.4) are a time series
where we can observe the share of contributors, the strategy of the players, and structural
variables changing over time.
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In this section, we investigate a scenario where players update partners without updating
their strategies. Thus, strategies are fixed from the outset. In Section 4.4, players update both
partners and strategies.

Figure 4 shows that under afixed strategy, partner updating (set at vp = 0.05) is effective.
The share of contributors and the average strategy stay constant. The mean clustering coefficient
rises and then drops off to quickly reach a steady state below its original value. The variance of
the degree distribution has a monotonic initial rise and then flattens quickly to a steady state.
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FIGURE 4 Number of Cooperators (players who contribute), Average Strategy, Clustering
Coefficient, and Variance of Degree Distribution over Time (averaged over 50 different
realizations for each benefit-cost ratio) N = 100, vg = 0, vp = 0.05, § = 0.8, and A = 0.01

The share of contributors in the network is independent of the benefit-cost ratio. The
average strategy () is constant by definition. The clustering coefficient and the variance of the
degree distributions are clearly functions of the benefit-cost ratio.

The simple dynamics of the structural variables suggests that a kind of “sorting” is taking
place. Generous players (with a low Tt value) lose ties to opportunistic players (with a high
tvalue) and surround themselves with other generous players, thereby creating clusters. The

opportunistic players are driven out of these newly formed clusters (see Figure 5). Thisraisesthe
clustering coefficient. As the average degree of the generous players rises (at the expense of the
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degree of less generous players), the variance of the degree distribution also rises. The generous
players are then inevitably surrounded by too many partners, which leads to a loss of some tiesto
the generous players. We thus have a drop in the clustering coefficient and a flattening of the

variance of the degree distribution. The result is summarized in Observation 2.

Observation 2. Under fixed player strategies, partner updating forms a cluster of generous
players who sustain cooperation.

Under fixed player strategies, partner updating changes the structural properties of the
graph so as to “lock in” the initial levels of contributions. Generous players are clustered with

other generous playersto initiate contribution. Opportunistic players stop contributing.16
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FIGURE 5 Average Clustering Coefficient for Players with the Lowest 20% and the Highest
20% Value of 1 in the Population (averaged over 50 different realizations) b = 6, N = 100,

v =0, vp = 0.05, 5= 0.8, and Ap = 0.01

4.4 Emergence of Structure Il

This section shows the full extent of the features of the model. The graph is random at the
outset and endogenously produces structure over time as players update their strategies and their
partners. Here, the share of contributors, the average strategy, the clustering coefficient, and the
variance of the degree distribution are all functions of the benefit-cost ratio.

16 The results for higher partner updating rates, vp = 0.1, vp = 0.3, and vp = 0.5, are qualitatively the same
as above.
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Figure 6 displays the results for strategy updating set to vg = 0.5 and partner updating set
to vp = 0.05. Here, we see the potentia that partner updating has when paired with strategy
updating. Under a regime of a high benefit-cost ratio (b = 12), the share of contributors can be
substantialy raised above its initia level. Here, the initiad share was 50%. Under lower
benefit-cost ratio regimes (b = 6), the share of sustained contributors is below the initial value,
although it is significantly higher than the share that could have been sustained under a random
graph, namely, 0%.
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FIGURE 6 Number of Cooperators (players who contribute), Average Strategy,
Clustering Coefficient, and Variance of Degree Distribution over Time (averaged over
100 different realizations for each cost-benefit ratio) N = 100, vg = 0.5, vp = 0.05,
6=0.8,and Ap =0.01

The share of contributors, the average strategy, and the clustering coefficient rise
monotonically and then quickly settle into steady-state values. For the lowest benefit-cost ratio
(b = 6), however, the variance of the degree distribution does not reach a steady state even after
5,000 periods. A higher rate of updating partners exacerbates the instability of the variance as
shown in Figure 7.

We conjecture that the increasing variance of the degree distribution is due to
apolarization of the strategy of players. As discussed in Section 4.3, the cooperations are
sustained through cooperators forming a cluster. When strategies are updated, players in the
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FIGURE 7 Variance of Degree Distribution over Time (averaged over 100 different
realizations for each benefit-cost ratio) N = 100, vg = 0.5, vp = 0.3, 6 = 0.8, and
Ap =0.01

cluster of the cooperators are likely to become more cooperative, and those on the outside are
likely to become less cooperative. This response is accelerated by cooperative players attracting
even more partners and less cooperative players further losing partners (which increases the
variance in the degree distribution). However, a more detailed exploration of the dynamics of the
model with strategy and partner updating is required to sharpen this reasoning.

5 CONCLUSION

Two conclusions can be drawn from the simulations. First, this study shows that the
interaction topology has an important effect on the outcome of simple games, such as the
provision of alocal public good. By using a broad definition of an interaction structure, we have
shown that adaptive rules are sensitive to the topology in which they operate. Asit pertainsto the
local public good game, we linked contribution directly to structural parameters. An important
consequence of this conclusion is a call for a closer investigation of the interaction structures.
Though the literature has made some inroads into investigating topological effects, the results
turn out to be specia cases with limited significance. A study in which the topology itself does
not evolve, has, in effect, fixed an important variable controlling the share of contributions.
Second, this study shows that considerations of locality and the ability to change locales can
provide important sources of coordination. In the local public good game, the ability to change
partners leads to significant levels of contribution, starting with topologies where no contribution
was expected.

Our results are based on two very ssimple structural measures. There is much room here to
expand these measures and to investigate their implications for the strategy dynamics in simple
games, even in the fixed interaction structure. Also, utilizing other structural measures might
help us to understand the dynamics in cases where the interaction topology and individual
strategies co-evolve.
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ENDOGENOUS NETWORK FORMATION
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ABSTRACT

Analytical and computational models were developed to study the conditions for the
stability of a population consisting of agents with heterogeneous preferences. The
analytical models that utilize an indirect evolutionary approach show that the ability to
detect others types is critical for the evolution of reciprocal preferences. The
computational models incorporate agents memories and endogenously built social
networks into the evolutionary dynamics. The simulations based on the computational
models show that the strength of the social network is a critical factor for the success of
non-selfish preferences. A fully heterogeneous population consisting of egoists,
reciprocators, and altruists can be stable for arange of parameter conditions.

INTRODUCTION

Many social situations that require cooperation among multiple individuals to achieve a
common goal, benefit those who free-ride on others’ efforts. If there were any biological or social
selection mechanisms that favor those who gain by cheating, societies would most likely be
inhabited by selfish individuals. In both economics and political science, the modern mode of
thinking is to assume that everyone is selfish and to devise rules and institutions that still deliver
tolerable social outcomes. However, self-reflection, careful observation of other human beings,
and experimental evidence from the socia sciences, indicate that our societies are not composed
entirely of selfish individuals, but rather of three diverse types. selfish, fair, and atruistic. Where
does this heterogeneity come from? How do those with non-selfish motivations survive?

While this question has been widely addressed by evolutionary game theorists (Axelrod
and Hamilton, 1981; Axelrod, 1981; Bendor and Swistak, 1997), their models often
underestimate the cognitive capability of human agents and the flexibility of human behavior. In
this paper, the indirect evolutionary approach (Gith and Yaari, 1992; Guth and Kliemt, 1998;
Guth, et al., 2000; Ahn, 2001) is utilized, which combines the features of standard non-
cooperative game theory and standard evolutionary game theory. The agents in the indirect
evolutionary models are rational in the sense that they have utility functions rather than fixed
behavioral rules, and they make choices based on the utility maximization principle. In terms of
motivations, agents are heterogeneous, some agents have utility functions that do not map the
material payoffs into utilities in a linear manner. In other words, they care about the social
consequences of their actions.

* Corresponding author address: T.K. Ahn, Workshop in Palitical Theory and Policy Analysis, 513 North Park
Ave, Bloomington, IN 47408; e-mail: tahn@indiana.edu.
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In an indirect evolutionary process, selection operates on material payoffs. The types of
individuals that are more successful materially increase over time. A mathematical formula of
evolution is used that is consistent with both biological and cultural interpretations of the
evolutionary process.

A variety of socia interactions have the material payoff structure of the Prisoner’s
Dilemma in which individuas face the temptation to defect, cheat, or free-ride. If al the
individuals behave selfishly, however, everyone is worse off than they would be in at least one
other outcome in which some of the individuals cooperated. Figure 1 shows a public good
provision problem involving two individuals. Each of the two individuals has an initia
endowment of p (0 < p < 0.5) and makes a binary choice of whether to contribute (cooperation)
or not (defection) for the provision of a public good. Contribution costs 1 to the contributor but
returns 1—p to each of the two individuals. No matter what the other does, an individual is always
better off when he or she does not contribute. Therefore, if both individuals are selfish neither
will contribute. Then each would receive a material payoff of p, which is smaller than the 1-p
that each of them would obtain if they both contributed.

Individual |
Cooperation Defection
Individual i Cooperation 1-p, 1-p 0,1
Defection 1,0 p, p

FIGURE 1 Two-person Public Good Provision Problem

MODELING MOTIVATIONAL HETEROGENEITY AMONG RATIONAL AGENTS

Experimental evidence strongly supports the hypothesis that there is a significant
proportion of individuals whose preference ordering over the four possible outcomes of the
action situation is not linear to the amount of material payoff he or she obtains in each of the four
outcomes shown in Figure 1 (Ahn et al., forthcoming; Ahn et al., 2001; Cho and Choi, 2000;
Clark and Sefton, 1999; Hayashi et a., 1999). In particular, most of the non-selfish individuals
seem to have an assurance preference with the following ordering over the four outcomes: u(C,C)
> u(D,C) > u(D,D) > u(C,D). Those who have an assurance type preference are reciprocators in
the sense that they cooperate if their partners cooperate but defect if their partners defect.

A relatively small proportion of individuals show a preference ordering of u(C,C) >
u(D,C) > u(C,D) > u(D,D), which implies unconditional cooperation. These individuals are
altruists. In most of the experiments, about a half of individuals revea a self-interested
preference ordering of u(D,C) > u(C,C) > u(D,D) > u(C,D). They are egoists. Other possible
types are empirically and analytically insignificant. Figure 2 is the utility payoff matrix that
model s the three preference types.
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Individual |
Cooperation Defection
Individual i ~ Cooperation 1-p 0+B;
Defection 1- o p
0<B,<a; <1

FIGURE 2 Utility Payoff Matrix for Individual

In Figure 2, if o is greater than p, individual i prefers to cooperate when j aso
cooperates. If B is larger than p, individual i prefers to cooperate even when j defects. The
restriction Bj < o implies that no individual has a preference ordering by which he or she prefers
to cooperate when the other defects, but prefers to defect when the other cooperates.
Substantively, p can be interpreted as the relative magnitude of the material temptation to defect.

One's preference type (egoist, reciprocator, or atruist) is ajoint function of one's generic
type (o, Bi) and the material payoff parameter (p) . For a given generic type, one is more likely
to be an egoist when p is large. A population can be characterized by a probability distribution
function F (o, Bj). For a given F, the proportion of behavioral reciprocators (8) and that of
altruists (y) are again functions of p.

INDIRECT EVOLUTION

In an indirect evolutionary process, agents interact in the action situation shown in
Figure 1 on the basis of their preferences shown in Figure 2. Evolution selects those who are
more successful materially. The question is whether or not any non-selfish types can survive and,
if so, which type would. In this section, the indirect evolutionary process is analyzed under four
different conditions.! In the next section, the simulation model is extended to incorporate
repeated interactions, memory, and social networks.

It is assumed that, at each evolutionary stage, each player plays the game only once with
another player who is randomly drawn from a population of infinite size. There are four possible
ways under which such a game can be played. The key factors are (1) whether the game is played
under complete or incomplete information regarding players types and (2) whether the game is
played simultaneously or sequentially. From these two dichotomies result four different
evolutionary conditions. simultaneous, complete information (SC); simultaneous, incomplete
information (Sl); sequential, complete information (QC); and sequential, incomplete information

Q).

The expected material payoff for an egoist (reciprocator, altruist) at timet will be denoted
as me; (mr mar ). At each evolutionary stage, a reasonable solution concept of non-cooperative
game theory is used to derive players behavior.2 When multiple equilibria exist, it is assumed
that a cooperative equilibrium (i.e., one in which at least some players cooperate) is played.

1 For complete analyses of all the four conditions, see Ahn (2001).

2 A Nash equilibirum for SC, a Bayesian equilibirum for SI, a subgame perfect equilibirum for QC, and a sequential
equilibirum for QI.
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To simplify mathematical analysis, for a given behavioral type, the values of o and 3 are
assumed to be the same across players. This facilitates studying the population dynamic of
Fi(o,p) — Ft*1(o,B) in a simpler dynamic of (8,y)t — (8,y)t*1 in which the proportion of
reciprocators (8) and that of altruists (y) at time t+1 are calculated by following time-independent
replicator functions:

Bepp = Ot Tty ¢

(41 =

-8, —Yt)Tet + 0t t + Vi Tat @)
TtTa,t

Vsl = 2 €)

(1-8; —Vt)Tet +O¢Ty ¢ +ViTayt

A type' srelative proportion in an evolutionary stage is exactly proportional to its relative
proportion in the immediately preceding stage times its relative success measured in terms of the
obtained material payoffs. This evolutionary dynamic may occur either genetically or culturaly.
The entire evolutionary process, regardless of the original population condition (8,7)0, can be
approximated by a continuous-time dynamic of which the vector derivatives are

[5 = 5t+At - 5t’ 7 = Vieat — 7t] . (4)

Figure 3 illustrates the evolutionary dynamics of al of the four possible single-play
environments. Only the evolutionary dynamics under the QI condition are discussed in more
detail. The sequential, incomplete condition is more common than other conditions in the real
world. That is, agents in the real world can hardly be sure of the exact motivationa types of
others.

Under the QI condition, a player plays the game as a first mover with probability 0.5 and
as a second mover with the same probability. Since agents are rational, their behavior is not
deterministic. The utility maximizing behavior is a function of the material incentive, p, and the
composition of types within a population (8,y)t. The lower-right panel of Figure 3 shows three
different equilibrium zones under the QI condition as functions of p, 6 (Rec), and y (Alt).

In all the three zones, the behavior of second movers is a direct function of their types:
egoists always defect, reciprocators copy the choice of the first mover, and altruists aways
cooperate. The difference across types is in their behavior as first movers. In Zonel, al three
types of first mover cooperate. Since the proportion of reciprocators is relatively large compared
with that of altruists and egoists combined, it pays for the first-mover egoists to cooperate. In
Zon